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ABSTRACT

This work presents a methodology for the statistical validation of 
discontinuity surfaces obtained from point clouds using digital pho-
togrammetry from drones. Our methodology allows you to review the 
quality of the data obtained with photogrammetry and decide whether 
these measurements are representative of the discontinuity surfaces 
that they analyze. It consists of three steps, the first one being a shape 
analysis that allows defining which statistical model should be used: 
Fisher for circularly symmetric clusters or Bingham fits better for axially 
symmetric clusters. This step also makes the most significant difference 
to other works since our methodology starts from the premise that not 
all discontinuity surfaces are flat. Therefore, Fisher parameters do not 
allow validating data that do not correspond to a plane. 

In the second step of the methodology, we calculate the consist-
ency parameters that depend on the statistical model defined in step 
1. The parameters are similar for both models; both estimate κ which 
indicates how much the sample is concentrated around the mean 
orientation and validates the existence of this and which is the value 
of the generating angle of a cone with a 95 % confidence limit that it 
contains within the mean orientation. 

Finally, step 3 is used when there are control measurements to 
compare the point cloud data and define if both samples characterize 
the same discontinuity surface in the rock mass. 

The results obtained on a rock outcrop allowed us to observe that 
the measurements obtained from the drone faithfully represent the 
discontinuity surface analyzed when these were compared with the 
measurements made manually with the compass. Furthermore, the 
dispersion parameters (𝜅  and 𝛼95) yielded results that make it possible 
to ensure that 1) there is a preferential direction (mean orientation) and 
2) the mean orientation is representative of the entire measured surface.

Key words: rock-discontinuities; spherical statistics models; drone; 
validation statistical; point cloud.

RESUMEN

Se presenta una metodología para la validación estadística para 
superficies de discontinuidad obtenidas de nubes de puntos utilizando 
fotogrametría digital a partir de drones. Esta metodología permite revisar 

la calidad de datos obtenidos con fotogrametría y decidir si estas medi-
ciones son o no representativas de las superficies de discontinuidad que 
analizan. Esta metodología se compone de tres pasos, siendo el primero 
un análisis de forma que permite definir qué modelo estadístico se debe 
utilizar: Fisher para agrupaciones circularmente simétricas o Bingham 
que se ajusta mejor para agrupaciones axialmente simétricas. Este paso 
también es el elemento que marca la mayor diferencia con respecto a otros 
trabajos ya que nuestra metodología parte de la premisa de que no todas 
las superficies de discontinuidad son planas y, por lo tanto, los parámetros 
de Fisher no permiten validar datos que no corresponden a un plano

En el segundo paso de la metodología, se calculan los parámetros 
de consistencia que dependen del modelo estadístico que se definió en el 
paso 1. Los parámetros son similares para los dos modelos, en ambos se 
calcula κ que indica qué tanto se concentra la muestra alrededor de la 
orientación media y valida la existencia de esta y α95 que es el valor del 
ángulo generador de un cono con un límite de confianza del 95 % de que 
contenga dentro la orientación media.

Por último, el paso 3 se utiliza cuando se tienen medidas de control 
con las que comparar los datos de la nube de puntos y permite definir si 
ambas muestras caracterizan a la misma superficie de discontinuidad 
en el macizo rocoso.

Los resultados obtenidos en una pared rocosa permitieron observar 
que las mediciones obtenidas a partir del dron representan fielmente a 
la superficie de discontinuidad analizada, cuando estas se compararon 
con las mediciones realizadas manualmente con la brújula. Además, los 
parámetros de dispersión (κ y α95) arrojaron resultados que permiten 
asegurar que 1) existe una dirección preferencial (orientación promedio) 
y 2) que esta dirección es representativa de toda la superficie medida.

Palabras clave: discontinuidades; modelos de estadística esférica; dron; 
validación estadística; nubes de puntos.

INTRODUCTION

Orientation data of rock strata and their discontinuities constitute a 
key knowledge element to characterize rock masses, which is crucial for 
many geoscientific and engineering applications. In structural geology, 
for instance, statistical analysis of orientation data allows reconstructing 
the history and evolution of an acting stress field (Ramsay and Huber, 
1987; Davis et. al., 2011; Allmendinger, et al. 2011). In exploration 
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geology, rock lineaments provide insights into different geometric 
patterns of ore deposits, oil/gas reservoirs, and fractured aquifers 
(Lerche, 1997; Fetter, 2001). In geotechnical engineering, dip and dip 
direction records are key inputs for developing slope-rock stability 
studies (Goodman, 1989; Hudson and Harrison, 1997). 

To obtain rock strata and their discontinuities’ orientation datasets, 
the common practice requires a qualified professional to visually 
identify and acquire an exhaustive number of measurements by hand, 
using a geological compass. Indeed, such process is time-consuming, 
labor-intensive and could be subjective because the measurement 
depends on person expertise. In recent years, local-scale remote sensing 
techniques, such as drone photogrammetry and Light Detection and 
Ranging (LiDAR), have emerged as promising tools for measuring 
rock discontinuities, which results particularly beneficial to acquire 
data over inaccessible or unsafe areas (Sturzenegger and Stead, 2009; 
Li, et. al., 2019; Buyer, et al., 2020). Remote-sensing-derived orientation 
datasets are commonly processed programmatically with the assistance 
of segmentation algorithms, hence lacking in-field discrimination 
offered by an experienced professional. Nevertheless, such datasets are 
large enough to be assessed by the means of statistical approaches, thus 
providing robust outcomes with confidence intervals (Jordá Bordehore 
et. al., 2017; Drews et. al., 2018; Mancera-Alejándrez et. al., 2020). 

In the field of Geosciences, orientation data considers the repre-
sentation of lines and planes on a semi-sphere using a stereographic 
projection (Mardia, 1972; Fisher et al., 1987; Priest, 1993; Marshak 
and Mitra, 1988; Davis, 2002; Borradaile, 2003). Overall, the analysis 
of spherical data using statistical methods relies mainly on assessing 
the consistency parameters given by several models. The Fisher Model 
(Fisher, 1953), for instance, assumes symmetrical data distribution 
around a mean orientation vector, whereas the Bingham Model 
(Bingham, 1964), focuses on distributions rather elliptical. The former 
is suitable for managing planar rock surfaces, while the latter is more 
convenient from treating non-planar discontinuities, i.e. curve surfaces 
(Woodcock, 1977).

The most used model for analyzing point clouds is Fisher’s because 
it is generally convenient to simplify discontinuity surfaces to planes 
and most algorithms to extract surfaces from point clouds have been 
developed for analyzing planes (Riquelme et al. 2014; Borrmann et al. 
2011; Rusu and Cousins 2011; Leng et al. 2016). The use of tools such 
as photogrammetry or LiDAR, allows it to be possible to obtain the 
real shape of the discontinuities, so it makes sense to explore those 
statistical distribution models that are coupled to it, such as Bingham’s 
to curved surfaces.

For example, in the analysis for discontinuities’ rock-slope stability, 
define whether it is a plane or curved surface, it has implications in 
calculating the factor of safety (FS) when it used limit equilibrium 
analysis. Since on the one hand, the models that are generally used 
are based on plane surfaces (Goodman, 1989; Hudson and Harrison, 
1997), which is a simplification of reality (like plane and wedge 
sliding model’s), and this sometimes could be translated into an 
underestimation or an overestimation of factor of security (FoS) 
(Sturzenegger and Stead, 2009; Stead and Wolter, 2015). On the other 
hand, although there is the complexity of mapping the real shape with 
measurements by hand, the use of techniques such as remote sensing 
generates numerous measurements of data that allow obtaining more 
realistic surfaces even if they are curved, so that in these cases the 
Fisher model will not always be applicable, and it will be necessary to 
have alternatives for the validation of the measurements obtained with 
remote sensing techniques.

Previous works perform statistical validations for point-cloud-
derived orientation datasets using Fisher’s model for symmetrical 
distributions. Jordá Bordehore et al. (2017) make the first approach 

at methodically analyzing remote-sensing spherical data using one of 
the two dispersion parameters of Fisher’s model: the concentration 
parameter kappa (𝜅 ) for comparing compass versus photogrammetric 
data obtained using Structure from Motion (SfM) discontinuity 
surfaces. Later on, Drews et al. (2018) utilizes two of Fisher’s dispersion 
parameters 𝜅  and 𝛼95, the latter being a confidence parameter, for 
comparing orientation measurements from compass and LiDAR cloud 
points. Mancera et. al. (2020) determines a one-order-of-magnitude 
improvement in the confidence cone parameter 𝛼95, when using 
orientation data from a dense point cloud (n = 2000) versus limited 
compass measurements (n = 36) on a planar surface of rock mass. 
However, and to the best knowledge of the authors, no previous works 
heretofore have dealt with the spherical statistics analysis of point-
cloud-derived orientation data lacking rotational symmetry around 
the mean orientation, rather fitting Bingham’s model. Furthermore, no 
previous work has dealt with the characterization process of rock walls 
to determine whether Fisher or Bingham’s Model are more suitable.

In this work, we propose a methodology for choosing the most 
convenient model between Fisher’s and Bingham’s and to perform 
a quality assessment of remotely-sensing-derived dip and dip direc-
tion measurements using spherical statistics and compass measure-
ments. The proposed methodology can be divided into three steps: 
1) Exploratory analysis of the point cloud data for determining the 
data distribution in their stereographic projection to define the most 
convenient distribution model (Fisher or Bingham). 2) Quality as-
sessment based on the classical consistency parameters for spherical 
statistics (𝜅  and α95) depending on the model chosen in the first step, 
and 3) a hypothesis test for determining if the cloud point-derived 
data represents the same population as control measurements (in this 
case data obtained using a geologist compass). This methodology can 
serve as a standard for characterizing point clouds and providing a 
data quality measurement and give consistence parameters for review 
the dispersion of data.

The scientific contributions of the research are a simple and repro-
ducible methodology that consists of three steps where it is possible to 
decide which statistical distribution model best suits the type of surface 
being measured and a quantitative assessment of the quality of data ob-
tained with remote sensing such as digital photogrammetry or LiDAR.

THEORETICAL BASE FOR SPHERICAL DATA 
DISTRIBUTION MODELLING 

In stereographic projections, the representation of a discontinuity 
plane is done using points known as poles. When a group of poles share 
similar distribution, they can be represented as a mean orientation pole. 
The reliability of a mean orientation to represent a discontinuity can 
be estimated using spherical statistics and distribution models, as well 
as consistency parameters. In Earth Sciences, two models are widely 
accepted (Davis, 2002; Borradaile, 2003).

The first model, proposed by Fisher (Fisher, 1953), focuses on 
the distribution of poles symmetrically distributed  around a mean 
vector (Figure 1a). The model conceptualizes a concept called Fisher’s 
spherical Probability Distribution Element (PDE), which provides the 
probability of finding a given direction within a unitary area element 
(dA), (Table 1). The model also considers a parameter known as Fisher’s 
κ (kappa), which increases as the concentration of poles around the 
mean orientation increases (Figure 1b). 

The second model, proposed by Bingham (Bingham, 1964), focuses 
on the populations of data forming elongated clusters in the form of gir-
dles. The model defines a confidence cone about the mean orientation, 
which intersection with the semi-sphere of the stratigraphic projection 



154

Mancera-Alejandrez et al.

 RMCG | v. 38 | núm. 3 | www.rmcg.unam.mx | DOI: http://dx.doi.org/10.22201/cgeo.20072902e.2021.3.1641

tends to form an ellipse (Figure 1c). The distorted region controlled 
the concentration parameters κint and κmin, they are intermediate and 
minimum concentration respectively and both are function of the 
normalized eigenvalues of the orientation’s tensor τ2 and τ3 (Figure 1d 
and 1e). Bingham’s spherical PDE is defined in Table 1.

METHODS

Methodology proposed 
We propose a methodology to validate dip and dip direction 

data obtained from photogrammetry-derived point clouds. Such 
methodology is presented in Figure 2 and described in the following 
paragraphs. The methodology consists of three tests: the first two tests 
(“exploratory analysis” and “data consistency parameters estimation”) 
perform a quality check on the data, while the third test (“accuracy 
test”) compares the dip and dip direction data from photogrammetry 
against control measurements gathered using instruments such as a 
geological compass.

Exploratory analysis
This test aims at graphically identifying the distribution model 

that better fits the data and thence calculate the dispersion parameters. 
For this test, the pole distribution is plotted on an equal-area stereo-
graphic projection. The following step is realize a shape analysis using 
a Woodcock’s diagram (Woodcock, 1977).

Woodcock (1977) proposes representing each observation in terms 
of its direction cosines li, mi and ni. The set of all data’s directions can 
be represented as a 3 by 3 orientation matrix, T (Equation 1), by using 
xi, yi and zi, which are individual observation’s components without 
normalization in the X, Y and Z directions (Fernández, 2005) (1).

 (1)

Considering that T is a symmetrical matrix, its eigenvalues, λ1, λ2, 
λ3, and its eigenvectors (ν1, ν2, ν3) can be calculated. The eigenvector 
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Figure 1. Distribution models: a) Fisher distribution: circular-symmetrical cluster of orientations. Its confidence cone is circular on the sphere. b) Probability density 
of Fisher distribution for different Fisher kappa (κ) vs. the angular distance (δ) from mean orientation. c) Bingham distribution has a cluster of orientations that 
does not possess circular symmetry but rather an orthorhombic symmetry. Density contours range in shape from ellipses to complete great-circle girdles. d) and e) 
show the concentration parameters variation (κint and κmin) in function of normalized eigenvalues τ2 and τ3. Modified from (Borradaile, 2003).
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ν1 corresponds to the direction of the smallest inertial moment, and 
thus, corresponds to the orientation with maximum density of observa-
tions. Meanwhile, the eigenvector ν3 corresponds to the largest inertial 
moment and corresponds to orientation with minimum observations’ 
density (Woodcock, 1977; Fernández, 2005). Expectedly, ν2 is perpen-
dicular to eigenvectors ν1 and ν3.

The sum of the eigenvalues λ1, λ2 and λ3 equal the number of 
observations of the analyzed set (N), Equation 2 (Woodcock, 1977):

λ1 + λ2 + λ3 = N  (2)

after normalization, we obtain that:

τ1 + τ2 + τ3 = 1 (3)

where: τ1 = λ1/N 
The normalized eigenvalues are ingested into a plot whose coordi-

nate system has the comparison between τ1 and τ2 in the vertical axis 
and the comparison between τ2 and τ3 in the horizontal axis, forming 
Woodcock’s diagram (Figure 3). On the one hand, the degree of fit to 
a plane is indicated by the parameter M (Equation 4). The larger the 
M, the more coplanar the poles, regardless of their symmetry around 
a point (girdle) or around an axis (cluster).

(4)

On the other hand, the degree of collinearity is related with the 
parameter K (Equation 5). When K equals to 1, there’s not a clear 
criterium to define a cluster or a gridle. When 1, the data set falls into 
the classification of a girdle, and when ∞, the data set falls into the 
classification of a cluster. 

(5)

Classic works on the treatment of paleomagnetic data (Tarling, 
1983; McElhinny and McFadden, 2000; Tauxe, 2003; Butler, 2004) 
use the eigenvalues obtained from the direction matrix of the point 
cloud to be analyzed and plot them in Woodcoks diagram to obtain 
the model that better fits the data (cluster or girdle) (Woodcock, 1977). 
Thereafter, the best probabilistic approach is adopted, i.e. Fisher’s for 
clusters and Bingham’s for girdles. In this work, we propose adopting 
the same approach but for discontinuities’ orientation data. 

Data Consistency Parameters
Fisher’s model parameters. Fisher (1953) defines κ and the con-

fidence cone α95. The first parameter, κ, is a concentration parameter 
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and describes the dispersion of the orientations around of the pre-
ferred orientation (mean orientation). κ served to calculate the PDE 
according to Table 1. A simple approximation of κ valid for any κ  ≥ 3 
is given by Fisher’s k:

(6)

Where N is the sample size and R is the magnitude of the non-
normalized resultant vector. R can be calculated by first obtaining the 
coordinates of each orientation datum in the X, Y, Z coordinate system 
by them dip and dip direction data:

xi = sin(dip) · sin(dipdir) (7)
yi = sin(dip) · cos(dipdir)  (8)

zi = cos(dip)  (9)

Then, the sum of all elements over each axis can be calculated as:

 (10)

which are finally used to calculate R:

 (11)

The second parameter, α95, is a 95 % confidence cone within which 
the true mean direction will fall, and can be calculated as (Tarling, 
1983; McElhinny, McElhinny and McFadden, 2000; Borradaile, 2003):

(12)

Both κ and α95 are accuracy measurements of the estimated mean 
orientation. According to the literature κ values greater than 10 are 
acceptable (Mardia, 1972; Tarling, 1983; Davis, 2002). As for α95 the 
smaller the value, the better. 

Bingham model’s parameters. As opposed to Fisher’s model, 
Bingham’s distribution model is not symmetric in all directions, but has 
a distortion in the confidence region around the mean. The parameters 
that define the confidence cone’s shape, therefore, are κint and κmin, which 
are perpendicular to the largest concentration one, κmax. κint and κmin 
relate to eigenvalues τ2 and τ3 according to the following expressions 
(Mardia and Zemroch, 1977):
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Where I0 and I1 are modified Bessel’s functions of the first kind and 
orders zero and one respectively, τ2 and τ3 are derived from Equations 
2 and 3, and θ is the cone angle. Mardia y Zemroch (1977) provide a 
table with the solutions to Equations 13 and 14 (Table 2) for values 
of κmin < 0.05. If necessary, for small values of τ2 and τ3, Equation 15 
provides an acceptable approximation. 

(15)

Finally, from the concentration values κmin and κint we can obtain 
the precision of the orientations in the minimum and intermediate 
direction (Borradaile, 2003) (Equations 16 and 17).
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25.54 13.05 8.89 6.78 5.47 4.55 3.84 3.27 2.79 2.36 1.98 1.63 1.31 1.00 0.71  
1.72 1.68 1.64 1.59 1.54 1.48 1.42 1.35 1.27 1.20 1.11 1.02 0.92 0.82 0.71  

0.32
25.50 13.01 8.84 6.73 5.41 4.48 3.77 3.20 2.71 2.28 1.89 1.54 1.21 0.89 0.59 0.29
1.51 1.47 1.42 1.37 1.31 1.25 1.18 1.11 1.03 0.94 0.85 0.76 0.65 0.54 0.42 0.29

0.34
25.46 12.96 8.79 6.67 5.35 4.42 3.70 3.12 2.62 2.19 1.79 1.43 1.09 0.77 0.46 0.15
1.31 1.27 1.22 1.16 1.14 1.03 0.96 0.88 0.79 0.70 0.60 0.50 0.39 0.27 0.14 0.00

0.36
25.42 12.91 8.73 6.61 5.28 4.34 3.62 3.03 2.53 2.09 1.69 1.32 0.97 0.64  
1.12 1.07 1.02 0.96 0.89 0.81 0.74 0.65 0.56 0.46 0.36 0.25 0.13 0.00  

0.38
25.37 12.86 8.67 6.54 5.21 4.26 3.35 2.94 2.43 1.99 1.58 1.20  
0.94 0.89 0.82 0.76 0.68 0.61 0.52 0.43 0.34 0.23 0.12 0.00  

0.40
25.31 12.80 8.60 6.47 5.13 4.18 3.45 2.85 2.33 1.87  
0.76 0.70 0.64 0.56 0.49 0.40 0.31 0.22 0.11 0.00  

0.42
25.25 12.73 8.53 6.39 5.05 4.09 3.35 2.74  
0.59 0.52 0.45 0.37 0.29 0.20 0.10 0.00  

0.44
25.19 12.66 8.45 6.31 4.96 3.99  
0.42 0.35 0.27 0.19 0.10 0.00  

0.46
25.12 12.58 8.37 6.22  
0.25 0.17 0.09 0.00  

0.48
25.04 12.50  
0.08 0.00                            

the mean direction, the F-test (F-statistic) is applied. F is defined as a 
function of both samples size (N1 and N2), the resultants for each one 
of the samples R1 and R2, and the combined resultant R (Equation 11) 
(Watson, 1965; McElhinny and McFadden, 2000).

(18)

If the calculated F-value of Equation 18 exceeds to Tabled value 

( ) 1 2
1 2

1 2 1 2

2 R R RF N N
N N R R
é ù+ -

= + - ê ú
+ - -ë û

available from a different, more “truer” source, to compare against the 
measurements from the point clouds throughout the evaluation of the 
degree of confidence cones overlap. An informal but quick analysis 
consists of observing if one confidence cone falls within the other; if 
both confidence cones do not overlap at all, the hypothesis consider-
ing that both samples belong to the same population is immediately 
rejected for a significance level of 0.05 (McElhinny and McFadden, 
2000). When two samples’s confidence cones overlap but do not contain 

Table 2. Concentration parameters, κmin and κint for the Bingham (Mardia and Zemroch, 1977).
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(Supplementary Table S1), the null hypothesis that the samples of 
mean orientations are similar or represent the same discontinuity 
surface is rejecting.

Experiment design and data acquisition strategy
Study area

We choose a rock wall, which is a basaltic rocks (Badilla, 1977) 
outcrop known as “La Escuelita” of 25.0 by 10.0 meters, located 
northwards from the Ciudad Universitaria at Olympic Stadium within 
UNAM’s main campus, Mexico City (19.3341°, -99.1933°) (Figure 
4). It consists of a sequence of lava flows from the Xitle monogenetic 
volcano (Schmiter, 1953; Delgado et al., 1998; Siebe, 2008). We use this 
outcrop because: a) the site is easily accessible for drone and manual 
measurements, b) the incipient vegetation in the wall to allow high-
quality drone photogrammetry results, c) the outcrop presents several 
distinguishable discontinuities, from well-defined planes to oblique 
surfaces, mostly originated from lava-flow cooling. 

Manually-acquired orientation data   
We acquired orientation data manually over two areas using a 

geologist compass. We chose two Control Polygons in the wall, namely 
CP1 and CP2, which correspond to a planar discontinuity surface 
(CP1) and an oblique discontinuity surface (CP2) (see location in 
Figure 4a). CP1 and CP2 were chosen to be 0.6 by 0.6 m and a mesh 
was over imposed on CP1 and CP2 to discretize them into 0.1 by 0.1 m 
cells (Figure 4b). In each one of the cells, dip and dip direction were 
measured using a geologist compass, retrieving 36 observations in total 
from each control polygon. The corners of each CP were later marked 
with red spray paint to make the area visible in the aerial pictures. 

Drone-acquired orientation data   
We generated point-wise orientation data from photogrammetry 

from an 3D-oriented pictures set acquired using a drone-carried 
gyroscopic camera. We used a DJI Phantom 4 Pro quadcopter with a 1’’ 
CMOS sensor of 20 megapixels and 100-12800 ISO range. We performed 
three wall-perpendicular flights with a distance of 8.0 m from the wall, 
80% between-picture overlap, and 70 % between-line overlap, acquiring 
a total of 33 pictures (~ 160 MB) covering a 250 m2 area. The pictures 
set was later ingested into AgisoftMetashape v. 1.5 (Agisoft, 2019) 
to conduct photogrammetry using 10 total-station-assisted ground 
control points placed on the wall’s surface, followed by an automated 
plane-detection process, assigning  dip and dip direction to each point-

cloud element. Simultaneously, we computed each point’s direction 
cosines. 

The photogrammetry output was of more than seven million 
points (Figure 4a). Later on, a subset of 2000 points within each 
control polygon were selected and cropped using Cloud Compare 
(Cloud Compare, 2019) (inset in Figure 4d) to compare against the 
data acquired manually.

RESULTS

Exploratory analysis of orientation data
We obtained the normalized eigenvalues for each control polygon 

(CP1 and CP2), which we summarize in Table 3.
We used the results of CP1 and CP2 (Table 3) to plot their coor-

dinate in Woodcock’s diagram (Figure 5). We observe that for CP1 
(triangle symbols) both point-cloud-derived and compass-acquired 
data sets yield results that fall close to the K = 5 line, well within the clas-
sification of a cluster. Therefore, CP1 datasets are analyzed using Fisher’s 
model. On the other hand, we observe that CP2 (square symbols) data 
sets yield results in the band 0.5 < K < 0.8, in the girdle classification. 
Consequently, CP2 datasets are analyzed using Bingham’s model. 

Data consistency parameters estimation and accuracy test
Control Polygon 1 (CP1)

In Section 4.3 we found that CP1 data defines a cluster and should 
be analyzed using Fisher’s model. Thus, we calculated κ y α95 consist-
ency parameters, using equations 6 and 12, for both the manually-
acquired data and the point-cloud subset. We present a summary of 
the parameters used for such calculations along with the accuracy test 

Lava flow 1

Lava flow 2

CP1

CP2

CP1

CP2

NE SW
a) c)Polygonb) A

A'

d)Control (CP)
Section

A-A'
Roughness

detail

0 2 4 6 8 m

Figure 4. “La Escuelita” rock outcrop wall (19.3341°, -99.1933°). (a) Panoramic view, yellow polyline indicates a discontinuity surface between two lava flows and 
red polygons show the location Control Polygons 1 and 2. (b) Red meshes show the discretization, of CP1 corresponds to a planar discontinuity surface, while CP2 
corresponds to a curved one. (c) Roughness detail for one element on the mesh. (d) Show a section of planar surface (CP1) and curved surface (CP2).

Eigenvalues CP1 CP2
Compass Point Cloud Compass Point cloud

τ1 0.9848 0.9839 0.8079 0.8316
τ2 0.0114 0.0102 0.1793 0.1557
τ3 0.0037 0.0059 0.0128 0.0127
ln(τ1/τ2) 4.459 4.569 1.5054 1.6754
ln(τ2/τ3) 1.125 0.547 2.6396 2.5063

Table 3. Eigenvalues and logarithm of eigenvalues ratios for CP1 and CP2.
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results in Table 4. Fisher’s κ, in both cases, is one order of magnitude 
larger than 10, which indicates a good concentration around the re-
ported mean orientations (Mardia, 1972; Tarling, 1983; Davis, 2002). 
Such deduction can also be made from Figure 5, where we observe that 
both mean orientation points fall within the region defined by M = 5 
and M = 6, and very close to K = 5. As for α95, we obtain values of < 1° 
and 2° for the point cloud and the manual measurements, respectively. 
Thus, the mean orientation does accurately represent the presented 
discontinuity surface. 

We present the data sets from both the manual measurements and 
the drone cloud, as well as the resulting mean orientation poles and 
confidence cones obtained from Table 4 data. Figure 6 shows that the 
point cloud’s confidence cone is located inside the manual measure-

ment’s one. Moreover, we use the results from the F-test (Table 4) to 
ensure that both samples belong to the same discontinuity surface. We 
use the size from the manual measurements (N1 = 36) and point cloud 
(N2 = 2036) data sets in Equation 18 and compare it to the results from 
using two and 4140 degrees of freedom in Fisher’s table (Supplementary 
Table S1). Because the F-test value calculated from our data, 0.97, is 
less than 2.9957 ~ 3 obtained from Fisher’s table, we conclude that both 
data sets indeed belong to the same surface. 

Control Polygon 2 (CP2)
We found that CP2 data defines a Girdle and should be analyzed 

using Bingham’s model (Figure 5). Hence, we calculated the dispersion 
parameters κint and κmin and concentration parameters α95(int) and 
α95(min) in the minimum and intermediate eigenvalues’ directions τ2 
and τ3 to obtain the regions of confidence’s semi-axes. We calculated 
κint and κmin using τ2 and τ3 following Mardia and Zemroch (1977) 
approach. Furthermore, we used the simplified estimation for small 
τ2 and τ3 provided in Eq. 16. We present a summary of such results in 
Table 5, a stereographic representation of the data, mean direction and 
confidence cones in Figure 7a, and a zoom-in to the mean directions 
in Figure 7b.
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Figure 5. Control polygon 1 (CP1) and control polygon (CP2) on Woodcock´s 
diagram.

CP1 Manual measurements Point cloud

Mean orientation
(Dip, Dip direction)

73.76°, 324.08° 74.03°, 325.31°

N 36 2036
R 35.72 2019.48
κ 127.39 123.17
α95 2.07° 0.28°

Accuracy test
Angular deviation 1.21
F-test (95 %) 0.97 <3

Table 4. Results summary of the dispersion parameters and accuracy test esti-
mations for CP1 with Fisher’s model.

a)

b)

Figure 6. (a) Stereographical representation of CP1 data and (b) the confidence cones detail obtained using Fisher’s model.
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We observed a low dispersion from the κmin value, which is, once 
again, greater than the threshold value of 10 (Tarling, 1983; Davis, 2002; 
McElhinny and McFadden, 2000) (i.e. κmin > 10), and a considerably 
low α95(min) value, especially for the point cloud data. The results 
of the accuracy test show that the confidence cones from both data 
sets overlap (7a y 7b). The F-test result for a 95 % confidence interval 
(0.004, see Table 5) reveals a value lower than the value obtained from 
the Fisher’s table (0.013). Therefore, the hypothesis that both samples 
belong to the same sample is valid. 

We calculate the dispersion parameters and perform the F-test 
on the CP2 data using Fisher’s model, and show the results in Table 6, 
Figure 7c. Using Fisher’s model, the calculated confidence cones for 
the manual measurements and the point cloud do overlap. However, 
the α95 values calculated for the manual measurements and the point 
cloud (32° and 5°) define a region evidently too wide (see Figure 7c) 
and far off the main concentration of poles. Furthermore, the results 
of the F-test are greater than the F-value from tables by two orders of 
magnitude, which would indicate that the samples do not belong to 
the same surface. 

DISCUSION

The analysis of CP1 from Fisher’s model revealed high κ values 
(Table 4), both for the compass data (κ = 127.4) and for the point cloud 
data (κ = 123.2), which indicates that the mean direction obtained 
for each case is representative of that sample. Studies from Jordá 
Bordehore et al. (2017) and Drews et al. (2018) showed cases where the 
condition of κ is also greater than 10, from 54 to 166 for the first and 
between 61 and 220 for the second (Table 7), which is consistent with 
our results. These studies also show that κ values can vary remarkably 
between orientation data obtained with a compass and point clouds 
for the same discontinuity surface (Table 7), indicating greater or 
lesser concentration but identifying a mean orientation, which is not 
the case of our results.

However, α95 values in our study differ by almost 2° between the 
manual and the point cloud measurements α95 (manual) = 2.07° and 
α95 (point cloud) = 0.28°, which means that the value of the mean 
orientation from the point cloud is of greater confidence. This contrast 
is observed when comparing the confidence cones’ size in Figure 6b 
and is partly due to the large amount of data from the point cloud to 
capture the flat surface CP1.

For CP2, we used Bingham model. The values of κmin and κint are 
almost identical for manual measurement, and the values of α95(min) 
is 3.58 and α95(int) is 3.6. These values define opened confidence cones 
compared to the results from the point cloud measurements, where are 
α95(min) point cloud is 0.47 and α95(int) point cloud is 1.52.

In contrast, point cloud measurements describe κmin>κint (Table 
5), as expected according to Mardia and Zemroch (1977), since the 
sample clusters more in the minimum direction (see Figure 7b). As  
κint<10, the data is scattered in that direction, but considering κmin>1, 
we can say that the sample has a preferential orientation. The value 
of α95 of greatest interest is α95(min) since the confidence cone will be 
smaller in this direction.

As can be seen in Table 5 and Figure 7a, α95(min) manual = 13.6° 
and α95(min) point cloud = 1.52°, which indicates, as in the previous 

CP2 Manual measurements Point cloud

Mean orientation 
(Dip, Dip direction)

83.89°, 5.08° 87.68°, 2.89°

N 35 2000
κmin 43.621/39.062 43.871/39.372

κint 3.041/2.792 4.241/3.212

α95(min) 3.58° 0.47°
α95(int) 13.60° 1.52°

Accuracy test
F-test (95 %) 0.004 < 0.103

Table 5. Results summary of the dispersion parameters and accuracy test esti-
mations for CP2 data using Bingham’s model.

Figure 7. Stereographical representation of CP2 data and the calculated confidence cones. a) Results from using Bingham’s model and b) a close up to the mean 
direction pole. c) Results from using Fisher’s model.

a)

b)

c)
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Author Lithology Set Statistic 
model

Compass survey Point cloud

Mean orientation Fisher's κ α95 Mean orientation Fisher's κ α95

Dip (°) Dip Dir (°) Dip (°) Dip Dir (°)

Jordá 
Bordehore 
et. al. 2017

Slates of Ordovician Period S0 Fisher 48 146 114 N/A 146 44 135 N/A
J1 Fisher 54 333 166 N/A 330 53 85 N/A
J2 Fisher 61 107 54 N/A 63 107 66 N/A

Drews et. al. 
2018

Biotite Granito and 
Sandstones with 
intercalations of silt an clay

1 Fisher 63.27 237.26 220 3.1 63.05 235.75 187 2.8
2 Fisher 1 346.8 61 3.1 0.6 167 71 2
3 Fisher 4.1 136.8 75 3.8 5.1 138 65 4.1

Our Basalts of Xitle volcano CP1 Fisher 73.76 324.08 127.39 2.07 74.03 325.31 123.17 0.28

CP2 Bingham 83.89 5.08 κmin κint α95 
(min)

α95 
(min)

87.68 2.89 κmin κint α95 
(min)

α95 
(min)

43.62 3.04 3.58 13.6 43.87 4.24 0.47 1.52

case, that the measurements obtained for the mean orientation from 
the point cloud represent the complexity of the CP2 surface more 
reliably than manual measurements. This reliability is partly associ-
ated with the large number of measurements available from the point 
cloud compared to those of the manual measurements, 2000 vs. 36 
measurements respectively. 

The hypothesis tests (based on F-test) for CP1 and CP2 were suc-
cessful, considering that the control data were manual, and that the 
confidence cone generated from the point cloud remains within the 
cone from the manual data. (Figures 6a and 7a). Consequently, we 
accepted the null hypothesis that the two measurements represent the 
same discontinuity for both cases (Tables 4 and 5).

At this point, it is essential to note that other works commonly 
adopt Fisher’s model (i.e., Table 6), as it is a common practice in geo-
technical engineering to simplify surfaces as planes (Jordá Bordehore 
et al., 2017; Drews et al., 2018). However, and for the sake of argument, 
let us analyze the results CP2 using Fisher’s model (Table 8, Figure 
7c). Consider that if we treat CP2 as a plane, the data obtained would 
indicate that the sample is very dispersed, and therefore there would 
not be a clear mean orientation (Table 6).

This observation becomes more tangible in the manual measure-
ments, where κ = 1.76, clearly below the recommended value of 10, also 
α95 (manual) = 32° is a very high value that defines a large confidence 
cone. Although the point cloud’s confidence cone is within the cone 
from the manual data (from an informal point of view), this cone’s 
value is much higher than that of tables when performing the F-test. 

That is why we discard the hypothesis that both samples belong to the 
same discontinuity.

One of our methodology’s applications is to validate discontinuity 
surfaces from point clouds obtained with remote sensing tools using 
steps 1 and 2. Additionally, if control measurements are available, step 
3 helps us calibrate and compare the data objectively and quantitatively.

In addition, in applications such as the measurement and 
classification of folds like Ramsay’s classification (Ramsay and Huber 
1987) and slope stability analysis, it can help to carry out studies with 
a high resolution by taking advantage of the number of measurements 
from point clouds obtained with a remote sensing tool, thus avoiding 
simplification when the conditions for manual data collection are 
complicated.

For example, a common simplification in rock slope stability analy-
sis assumes that all discontinuities families are plane surfaces (Hoek 
and Bray, 1981; Goodman, 1989; Hudson and Harrison, 1997; Kliche, 
1999). The simplification in our CP2 example would be to analyze the 
curved plane as two families, one with the dip towards the north and 
the other towards the south (Figure 7). However, the curvature of the 
surface would be neglected, which in practical terms could mean an 
increase or a reduction in the Safety Factor using a limit equilibrium 
stability analysis.

Most of the algorithms reported in the literature base the semi-
automatic identification of discontinuity families from point clouds 
on the detection of planes only gm, which in general simplifies and 
solves the geometry almost realistically. However, in some geological 
environments such as curved fractures by cooling (Pollard and Aydin, 
1988; Glastonbury and Fell, 2000; Sainsbury and Sainsbury 2013; Stead 
et al., 2006; Crider, 2015; Stead and Wolter, 2015), discontinuities 
outline curved surfaces that require the intervention of the Bingham 
model, which can be analyzed with the methodology here proposed.

Although our experiment was controlled and automatically 
identified surfaces were not tested with other available algorithms, 
this methodology could be used when applying algorithms that iden-
tify curved surfaces such as those of Schnabel et al. (2007) or Liu et 
al. (2019). In this sense, this methodology is not restricted to Rock 
Mechanics applications, but it can be applied in Structural Geology for 
the validation in the measurement and classification of geological folds. 
Besides, in those cases where the condition of discontinuity surfaces is 
measured and is necessary to validate the quality of the data obtained 
from a point cloud.

CP2 Manual measurements Point cloud

Mean orientation 
(Dip, Dip direction)

24.94°, 19.29° 22.05°, 34.98°

N 35 2000
R 15.72 1819.58
Κ 1.76 11.08
α95 32° 5.09°

Accuracy test
F-test (95%) 228.3 >>>3

Table 6. Results summary of the dispersion parameters and accuracy test esti-
mations for CP2 data using Fisher’s model.

Table 7. Comparison between κ and α95 values obtained in this paper and analyzed surfaces in other works.
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CONCLUSIONS

In this work, a methodology is proposed to validate the quality of 
directional data such as point clouds or data acquired manually using 
a geological compass (contingent on sufficient data). The proposed 
methodology consists of three steps which are based on spherical 
statistics.

The first step is an exploratory analysis of shape to define which 
statistics distribution model to use. If the distribution of the data is 
circularly symmetric, the model to be used will be Fisher’s and when 
the symmetry is axial in the data, then it is proposed to use the Bingham 
model. The second step is to calculate the consistency parameters of 
the data, that is, the concentration parameter (κ) and confidence cone 
(α95). These parameters indicate how dispersed the sample is and the 
reliability of finding the mean orientation with a confidence limit of 
95 %. The third step is a hypothesis test to determine if two groups of 
data represent the same surface in the mass rock. 

We verify that the methodology allows obtaining parameters that 
validate the quality of the directional data and is easy to apply. Although 
the common professional practice is to treat discontinuities as planar 
surfaces to apply Fisher’s model, we observed that there are surfaces 
that may resemble planes but statistically behave like non-planar 
surfaces which can be better represented using Bingham’s model.  
The tendency to non-planarity is often considered as roughness and 
accounted for using parameters such as the Joint Roughness Coefficient 
(JRC) (Barton, 1973).  However, such parameter works at a scale which 
usually does not impact the geometry used in a kinematic analysis of 
slope stability. Therefore, the choice of using either Fisher or Bingham’s 
model becomes very important.

The limitations of the drone-assisted dataset used in this work 
includes the illumination of the observed discontinuities, in terms of 
the need to have a free face and must be free of vegetation. However, our 
dataset did allow us to map nonplanar discontinuities, which would be 
difficult to identify in a normal field survey without doing systematic 
measurements for 0.60 by 0.60 m polygons as done in this work.

SUPPLEMENTARY MATERIAL

The Table S1 "Distribution F-Fisher values" can be found at <www.
rmcg.unam.mx>, in the abstract-preview page of this paper.
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