Cómo citar: Barbosa-Espitia, Á.A., Kamenov, G.D.,
Foster, D.A., Restrepo-Moreno, S.A., Pardo-Trujillo, A., Echeverri, S., 2021, Comment on “Emplazamiento del magmatismo Paleoceno-Eoceno
bajo un régimen transtensional y su evolución a un
equilibrio dinámico en el borde occidental de Colombia” by
Grajales et al., Rev. Mex. Cienc. Geol. (2020),
37(3), 250-268: Revista Mexicana de Ciencias Geológicas, v. 38, núm. 2, p.
141-147.
DOI: http://dx.doi.org/10.22201/cgeo.20072902e.2021.2.1615
v.
38, núm. 2, 2021, p. 141-147
Comentario
Comment on
“Emplazamiento del magmatismo Paleoceno-Eoceno bajo un régimen transtensional y su evolución a un equilibrio dinámico en el borde
occidental de Colombia” by Grajales et al., Rev. Mex. Cienc. Geol.
(2020), 37(3), 250-268
Comentario
a “Emplazamiento del magmatismo Paleoceno-Eoceno bajo un régimen transtensional y su evolución a un equilibrio dinámico en
el borde occidental de Colombia” por Grajales et al., Rev. Mex. Cienc. Geol. (2020), 37(3), 250-268
Ángel A. Barbosa-Espitia1,3,*,
1 Department of Geological Sciences, University of
Florida; 241 Williamson Hall, Gainesville, FL, 32611, USA.
2 Departamento de
Geociencias y Medio Ambiente, Facultad de Minas, Universidad Nacional de
Colombia, Carrera 80 # 65-223, Núcleo Robledo, Medellín, Colombia.
3 Departamento de
Ciencias Geológicas, Instituto de Investigaciones en Estratigrafía (IIES),
Universidad de Caldas, Calle 65 # 26-10, edificio Orlado Sierra, Bloque B,
segundo piso, Manizales, Colombia.
* angelbarbosae@gmail.com,
angelbarbosa@ufl.edu
ABSTRACT
Grajales et
al. (2020) reviewed
geochronological and geochemical data from Paleogene volcanic and plutonic
rocks outcropping in the Panama-Choco Block (north western
Cordillera) and southern Western Cordillera, as well as the Central Cordillera
of Colombia. These data were used to support a model of continuous Paleogene
arc magmatism along the Colombian continental margin, and to propose a
paleogeographic model for the arc. The authors did not discuss previously
published paleomagnetic, geochemical, geochronological, thermochronological and
provenance constraints from Cretaceous to Miocene rocks of western and northern
Colombia, Panama, and Ecuador that support a more plausible model of a double
subduction system controlled by the convergence of the Caribbean and Farallon
plates beneath the north Andean block during Paleogene. In this comment, we
discuss shortcomings in the data and model proposed by Grajales
et al. (2020) and present an alternative interpretation for
contemporaneous arc-like magmatism during the Paleogene in the Northern Andes.
We conclude that the double subduction system is the more plausible explanation
for the contemporaneous arc-like magmatism during the Paleogene, currently
exposed in the northern and southern portions of the Northern Andes.
Key
words: Northern
Andes; circum-Caribbean paleogeography; arc magmatism; Panama-Choco Block;
Paleogene tectonics.
RESUMEN
Grajales
et al. (2020) hacen una revisión de la información geocronológica y geoquímica
de rocas plutónicas y volcánicas aflorantes en el Bloque Panamá-Chocó (norte de
la Cordillera Occidental), sur de la Cordillera Occidental, así como la
Cordillera Central de Colombia. Estos datos fueron usados para plantear un
modelo de un arco continental del Paleógeno continuo a lo largo del margen
continental colombiano y para proponer un modelo paleogeográfico y de
emplazamiento para las rocas ígneas del arco propuesto. Sin embargo, los
autores no discutieron los datos geoquímicos, geocronológicos, termocronológicos y de proveniencia publicados para rocas
cretácicas-miocénicas del noroccidente colombiano,
Panamá y Ecuador, los cuales sugieren un modelo más probable de doble
subducción controlado por la convergencia de las placas Caribe y Farallón bajo
el Bloque Norandino durante el Paleógeno. En este
comentario, se discuten algunos problemas relacionados con la compilación e
interpretación de los datos y el modelo presentados por Grajales et al. (2020).
Después de esta discusión llegamos a la conclusión que la presencia de un
sistema de subducción doble es la explicación más razonable para el magmatismo
de arco paleógeno, actualmente presente en los sectores sur y norte de los
Andes del Norte.
Palabras
clave: Andes del
Norte; Paleogeografía de la región circum-Caribe;
magmatismo de arco; Bloque Panamá-Chocó; tectónica del Paleógeno.
Comment received: february
7, 2021
Comment accepted: may 6, 2021
INTRODUCTION
Grajales et
al. (2020) discussed
geochronological and geochemical data from Paleogene arcs developed at three
locations of the northwestern South America:
Panama-Choco Block, which they called northern Western Cordillera (WC),
southern WC, and Central Cordillera (CC), now juxtaposed onto the Colombian
Andes (Figure 1). They reported geochemical data from the southern WC and
geochronological data already published and discussed by Barbosa-Espitia et
al. (2019) (Figure 1). These data
were combined with previously published geochemical and geochronological data,
and interpreted to result from a single, continuous Paleogene arc along the paleocontinental margin of the Colombian Andes, which formed
as a result of the subduction of the Farallon Plate in
a transtensional tectonic setting. This
paleogeographic and tectonic interpretation contrasts with well-established
models for double subduction of the Farallon and Caribbean plates proposed for
the origin of Paleogene arc-like rocks in Colombia, Ecuador
and Panama (e.g., Cardona et
al., 2018, Barbosa-Espitia et
al., 2019; Vallejo et al.,
2020). The double- subduction hypothesis is based on a large and diverse data
set including field work, paleomagnetic, geochronologic, geochemical and
isotopic studies (e.g., Restrepo and Toussaint, 1990; Estrada, 1995; Chiaradia, 2009; Pindell and Kennan, 2009; Bayona et
al., 2012; Montes et al.,
2012; Boschman et al., 2014; Wright et al.,
2016; Cardona et al., 2018; Barbosa-Espitia et al.,
2019; Montes et al., 2019; Vallejo et al., 2019,
2020). We welcome discussions on the tectonic and paleogeographic evolution of
the Northern Andes during the Paleogene to improve our understanding of this
complex orogenic system involving interactions of several tectonic plates.
However, the profound implications of the model proposed by Grajales
et al. (2020) for ore deposits, hydrocarbon prospectivity,
and geohazards, requires a careful examination of the presented data and
interpretations.
Figure 1. Tectonic setting of the northern Andes showing
information not taken into consideration or wrongly interpreted by Grajales et
al. (2020) for their
paleogeographic and tectonic model: Contemporaneous Paleogene arc-like rocks
derived from continental and island arcs, tectonic boundary proposed by
Duque-Caro (1990) for the Panama-Choco Block, Cretaceous rocks assumed as
Paleogene and included in interpretations, location of samples already
published by Barbosa- Espitia et al. (2019)
(numbers in the map).
TEMPORAL AND
GEOCHEMICAL CONSTRAITNS
Grajales et
al. (2020) compiled several whole
rock geochemical data and Paleogene geochronological dates from magmatic rocks
of the Panama-Choco Block, southern WC (Timbiquí
Complex), and CC to establish a temporal and magmatic framework for their work
(Grajales et
al., 2020, table 4 and supl. mat.) (Figure 1). However, the authors made some
mistakes when compiling the data. Grajales et al. (2020)
presented geochronological data for the Antioquia, Ibagué,
Sabanalarga and Buga
batholiths with ages between ~44 and 59 Ma, which they consider crystallization
ages obtained by the U/Pb method (Grajales et al.,
2020, table 4). However, after a revision of such data it is
clear that Grajales et al. (2020)
erroneously included 40Ar/39Ar ages, as well as zircon and apatite fission-track
ages reported by Villagómez and Spikings (2013) and
ANH- UCaldas (2011), as if they were U/Pb. These Ar/Ar and fission-track apparent
ages represent post crystallization cooling to temperatures below ~350 ⁰C
and cannot be considered as crystallization ages. Although Grajales
et al. (2020) presented a corrigendum for these
inconsistencies, geochemical data from the Anserma
Gabbro, Mistrato Pluton and Buga
Batholith are still included in the Paleogene magmatism of the CC (Grajales et
al., 2020, figures
4 and 5, suppl. mat.) (Figure 1). The Buga Batholith,
as well as the Mistrato Pluton were dated as
Cretaceous U/Pb zircon ages; (Pardo-Trujillo et al., 2020;
Villagómez et al., 2011), whereas the Anserma
Gabbro was dated in the same temporal range using whole rock K/Ar ages (Maya, 1992). The wrong assumption of these
plutonic bodies as Paleogene in age, which is clearly incorrect, creates
serious conflicts in the interpretation of the tectonic setting of the Northern
Andes during Cretaceous and Paleogene time. According to several authors, during
Cretaceous and Paleogene time a series of tectonic events took place in the paleocontinental margin of NW South America with
consequences for arc magmatism and sedimentary basins infill (e.g.,
Villagómez et al., 2011; Montes et al.,
2019; Pardo-Trujillo et al., 2020; Bayona et al.,
2021). Furthermore, Grajales et al. (2020)
reported six zircon U-Pb ages (samples 1246-1, 1246-4, 40-006-CPC, 90-005-CPC,
40-007-CPC, CLM-0447-P) already published by Barbosa-Espitia
et al. (2019) without citation or citing ANH-GRP (2014) (Grajales et
al., 2020, tables 1 and 4).
Compiled U/Pb ages for the samples X, XX, APO-0056-LG, CLM-0376-R, CDG-0255-P (Grajales et
al., 2020, table 4), are not
reported in Cardona et al. (2018), or ANH- GRP (2014), which citation is in
fact ANH-GRP (2011); therefore, it is unknown where geochronological data of
these samples come from. The incorrect assumptions of Grajales
et al. (2020) and lack of care with the data compilation
brings confusion instead of shedding light on the origin and evolution of the
Paleogene arc magmatism in the Northern Andes.
Figure 2. Sr/Y vs. MgO diagram by Grajales et al.
(2020) reinterpreted in this comment. Red arrow represents a decrease in Sr/Y
with differentiation due to the presence of plagioclase in the magma, implying
crystallization under lower pressure conditions. Blue arrow represents an
increase in Sr/Y with differentiation due to the presence of amphibole ± garnet
and plagioclase suppression, implying crystallization under intermediate to
high-pressure conditions in a thick crust, characteristic of continental arcs. North Western Cordillera samples are from the Panama-Choco
Block. Dotted circles represent outliers.
GEOCHEMISTRY
AND ITS RELATIONSHIP WITH MIGRATION AND EMPLACEMENT OF INTRUSIVES
Grajales et
al. (2020) used the temporal and
apparent compositional similarities of the arc-like rocks of the Panama-Choco
Block and Timbiquí Complex (Figure 1) to propose
continuation of the Paleogene arc-like magmatism along the entire WC. They
argue that all these rocks belong to the Panama-Choco Block, citing
Zapata-García and Rodríguez-García (2020). Barbosa-Espitia
et al. (2019) suggested that the contemporaneous Paleogene
arc-like rocks from the northern WC and southern WC have different origin and
cannot be related on the basis of new and preexistent geochemical and isotopic data. Following the
simplistic interpretation of Zapata-García and Rodríguez-García (2020), Grajales et
al. (2020) proposed that the
geochemical differences in arc-like rocks from the Panama-Choco Block and CC
are related to subduction of the Farallon plate and basaltic magma emplacement
related to tensional fractures. This explanation, however, is inconsistent with
the extensive magmatism in the Panama-Choco Block represented by the Paleogene Mandé Batholith, which is a large tholeiitic-calc-alkaline
pluton emplaced under low- pressure conditions (Barbosa-Espitia
et al., 2019) and separated from the Cretaceous WC rocks by
a tectonic boundary (Duque-Caro, 1990) (Figure 1). The Mandé
Batholith is similar to plutonic outcrops in Panama
and northern Colombia (Acandí Region), which show
geochemical signatures akin to intra oceanic arc settings (e.g.,
Salazar et al., 1991; Wegner et al.,
2011; Montes et al., 2012; Cardona et al., 2018;
Sánchez-Celis et al., 2018;
Barbosa-Espitia et al.,
2019). Moreover, Grajales et al. (2020)
used Sr/Y vs. MgO diagram to propose emplacement of arc-like rocks
within the Panama-Choco Block (northern WC) in a continental border. However, Grajales et
al. (2020) did not discuss that
the fields in this diagram are a function of the degree of fractional
crystallization of minerals within the magma, which in turn depend on pressure.
In their diagram, it is evident that fractional crystallization of arc-like
rocks from the Panama-Choco Block (northern WC) occurred under lower pressure
conditions, given by the decrease of Sr/Y with increasing MgO (Figure 2), which
suggest the presence of plagioclase in the magma. This is in stark contrast
with the behavior of the southern WC and CC arc-like
rocks, which show an increase in Sr/Y when MgO decreases, a feature that
indicates the presence of amphibole ± garnet and crystallization under
intermediate to high pressure conditions (Figure 2). Contrasting Sr/Y behavior between the Panama-Choco Block and the southern
segment of the WC arc-like rocks was already noted by Barbosa-Espitia et
al. (2019), who used these
geochemical differences along with isotopic data and previous provenance
studies within contemporaneous units in Ecuador (Vallejo et al., 2009)
to propose a continental arc origin for the igneous suites of the southern WC
compared to the island arc origin for the Panama-Choco Block. Geochemical
evidence clearly suggests contrasting tectonic settings for Paleogene igneous
rocks of the Panama-Choco block and southern portions of the WC.
COMPARISON
BETWEEN PREVIOUSLY PROPOSED PALEOGEOGRAPHIC AND TECTONIC MODELS FOR THE
NORTHERN ANDES AND PANAMA, AND THAT PROPOSED BY GRAJALES ET AL. (2020)
In
addition to the rocks studied by Grajales et al. (2020),
the paleogeographic and tectonic settings of the Northern Andes during Paleogene
times involve arc-like rocks of the costal arc in northern Colombia (Santa
Marta and Guajira massifs); San Blas Complex in Panamá; and Silante
and Macuchí arcs in Ecuador (Figure 1). All these
rocks have been studied by several authors with different techniques including paleomagnetism, provenance, geochemistry, geochronology and
isotopic analyses (e.g., Restrepo and Toussaint, 1990; Estrada, 1995; Chiaradia, 2009; Pindell and Kennan, 2009; Vallejo et al., 2009;
Cardona et al., 2011; Bayona et al.,
2012; Montes et al., 2012, Boschman et
al., 2014; Cardona et al., 2014;
Salazar et al., 2016; Wright et
al., 2016; Cardona et al.,
2018; Montes et al., 2019; Vallejo et al., 2019,
2020). As a result of these works, a robust model was proposed and refined in
recent studies (Cardona et
al., 2018;
Barbosa-Espitia et al., 2019)
(Figure 3a and 3b). This model suggests that the Paleogene arc-like rocks in
the region were generated by subduction of the Caribbean and Farallon plates.
According to this model, the N-NW movement of the Caribbean plate resulted in
subduction beneath the northern paleocontinental
margin of Colombia generating the arc-like rocks in the Central Cordillera, as
well as Santa Marta and Guajira massifs (Cardona et al., 2011;
Bayona et
al., 2012; Cardona
et al.,2014, Salazar et al., 2016;
Bustamante et al., 2017; Cardona et al.,2018).
On the other hand, the subduction of the Farallon plate generated the arc-like
rocks of southern Colombia and Ecuador, as well as Panamá, including its
accreted sector in northern Colombia (Cardona et al., 2018;
Barbosa-Espitia et al.,
2019) (Figure 3a and b). In contrast, Grajales et al. (2020)
place their data into an in-situ model, without a discussion on how the data support
this model or why they discarded the Caribbean and Farallon plates
double-subduction model. The Grajales et al. (2020)
model implies that the southern sector of the Panama-Choco Block was already
accreted to the continental margin during Early Paleogene and that the oblique
subduction of the Farallon plate would have generated simultaneous magmatism in
the CC and WC (Figure 3c and d). However, this interpretation contradicts
thermochronological, structural, and paleomagnetic data from Colombia and
Panama suggesting that the Panama-Choco Block was accreted during the Neogene
to north western Colombia (MacDonald, 1980; Suter et al.,
2008; Farris et al., 2011; Barat et al.,
2014; Piedrahita et al.,
2017; León et al., 2018). This model neither can explain the Paleogene
magmatism in the Santa Marta and Guajira massifs (Cardona et al., 2011,
2014; Salazar et al., 2016), high-pressure metamorphic rocks associated to
suture zones reported in western Colombia (Bustamante and Bustamante, 2019;
Avellaneda-Jiménez et al., 2020; Bustamante et al.,
2020) and faults that bound the Panama-Choco block and southern sector of the
WC (Figure 3c). All these data and studies must be considered and fully
discussed to construct an integrative-alternative in situ paleogeographic
model. Without the consideration of these data, the in situ model
proposed by Grajales et al.
(2020) lacks support and reliability.
The
lack of care with the compilation of geochemical and geochronological data and
poor discussion of geochemical data presented by Grajales
et al. (2020), along with the extensive and diverse set of
data presented during the last four decades indicate that a double subduction
system controlled by the convergence of the Caribbean and Farallon plates
beneath the north Andean block during Paleogene, is the more plausible
explanation for the contemporaneous arc-like magmatism, currently located in
disparate segments of the northwestern Andes.
Figure 3. Comparison between double-subduction and
single-subduction models for the northern Andes and Panama. a) Previously proposed
double-subduction paleogeographic model [after Cardona et al. (2018)]
and b) tectonic model [after Barbosa-Espitia et al. (2019)].
c) Single- subduction paleogeographic and d) tectonic model proposed by Grajales et
al. (2020). The tectonic model proposed
by Grajales et
al. (2020) do not take into
consideration geographic separation between the Mande Batholith and the Timbiquí Stock. These plutons are separated by hundreds of
kilometers and presumably fault bounded, as Grajales et al. (2020) correctly
show in the paleogeographic
model on c.
CONCLUSIONS
We
reviewed the data presented by Grajales et al (2020)
and found serious inaccuracies in the compilation and interpretation of the
data. In order to propose a new Paleogene
paleogeographic and tectonic model for the complex geologic history of the
Northern Andes, all published data must be evaluated, and discussed considering
the limitations of the data. If the data is not accurately interpretated, then
the subsequent models and conclusions will be erroneous. New ideas and
interpretations to understand the complex geology of the Northern Andes must be
based on consideration and citation of previous works, and use of extant and
new data. Models not supported by data bring confusion to relevant aspects of
the geologic history of Colombia such as the timing of ore deposit formation,
closure time of fore arc basins in western Colombia, and post Paleogene tectonic
events such as the collision of the Panama-Choco Block.
ACKNOWLEDGEMENTS
We would like
to thank the Agencia Nacional de Hidrocarburos
(ANH), project: Tectonostratigraphic characterization of the Colombian Pacific
Basins, for the financial support. Staff of the Instituto de Investigaciones en Estratigrafia (IIES) at the Universidad de Caldas and the Consorcio Pacifico Colombiano (CPC) are acknowledgement for their always
timely support in the field and office work.
REFERENCES
ANH-GRP (Agencia Nacional de
Hidrocarburos, Geología Regional y Prospección), 2011, Cartografía geológica a
escala 1:100.000 de las planchas 340, 362, 385 y 409 localizadas en la Cuenca
de Tumaco, así como el inherente levantamiento de columnas estratigráficas y
muestreo litológico para los análisis petrográficos, bioestratigráficos,
geoquímicos, petrofísicos y radiométricos: Agencia Nacional de Hidrocarburos, technical report, 207 pp <http://recordcenter.sgc.gov.co/B14/23008010024581/documento/pdf/2105245811101000.pdf>
ANH-GRP (Agencia Nacional de
Hidrocarburos, Geología Regional y Prospección), 2014, Cartografía geológica a
escala 1:100.000 de las planchas 340, 362, 385 y 409 localizadas en la Cuenca
de Tumaco, así como el inherente levantamiento de columnas estratigráficas y
muestreo litológico para los análisis petrográficos, bioestratigráficos,
geoquímicos, petrofísicos y radiométricos: Bogotá, Colombia, Agencia Nacional
de Hidrocarburos, Publicación Especial, 207 pp. <http://recordcenter.sgc.
gov.co/B14/23008010024581/documento/pdf/2105245811101000.pdf>
ANH-UCaldas
(Agencia Nacional de Hidrocarburos, Universidad de Caldas,) 2011, Estudio
integrado de los núcleos y registros obtenidos de los pozos someros tipo “slim holes” en la cuenca del Sinu: Agencia Nacional de Hidrocarburos, technical report, 71 pp.
Avellaneda-Jiménez,
D.S., Cardona, A., Valencia, V., León, S., Blanco-Quintero, I.F., 2020,
Metamorphic gradient modification in the Early Cretaceous Northern Andes
subduction zone: A record from thermally overprinted high-pressure rocks:
Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2020.09.019
Barat,
F., Mercier de Lépinay, B., Sosson,
M., Müller, C., Baumgartner, P.O., Baumgartner- Mora, C., 2014, Transition from
the Farallon Plate subduction to the collision between South and Central
America: Geological evolution of the Panama Isthmus: Tectonophysics, 622,
145-167, https://doi.org/10.1016/j.tecto.2014.03.008
Barbosa-Espitia, Á.A., Kamenov, G.D.,
Foster, D.A., Restrepo-Moreno, S.A., Pardo-Trujillo, A., 2019, Contemporaneous
Paleogene arc-magmatism within continental and accreted oceanic arc complexes
in the northwestern Andes and Panama: Lithos, 348-349, 105185,
https://doi.org/10.1016/j.lithos.2019.105185
Bayona,
G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C.,
Montenegro, O., Ibañez-Mejia, M., 2012, Early
Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic
Plateau–continent convergence: Earth Planetary Science Letters, 331–332(0),
97-111, https://doi.org/10.1016/j.epsl.2012.03.015
Bayona,
G., Baquero, M., Ramírez, C., Tabares,
M., Salazar, A.M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C.,
Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Marulanda,
S.G., Cárdenas‐Rozo, A.L., 2021, Unravelling the
widening of the earliest Andean northern orogen: Maastrichtian to early Eocene
intra‐basinal deformation in the northern Eastern
Cordillera of Colombia: Basin Research, 33(1), 809-845,
https://doi.org/10.1111/bre.12496
Boschman,
L.M., van Hinsbergen, D.J.J., Torsvik,
T.H., Spakman, W., Pindell, J.L., 2014, Kinematic
reconstruction of the Caribbean region since the Early Jurassic: Earth-Science
Reviews, 138, 102-136, https://doi.org/10.1016/j.earscirev.2014.08.007
Bustamante,
A., Bustamante, C., Cardona, A., Juliani, C., Pereira
da Silva, S., 2020, Jambaló blueschist and
greenschist protoliths in the Central Cordillera of the Colombian Andes and
their tectonic implications for Late Cretaceous Caribbean-South American
interactions: Journal of South American Earth Sciences, 102977,
https://doi.org/10.1016/j.jsames.2020.102977
Bustamante,
C., Bustamante, A., 2019, Two Cretaceous subduction events in the Central
Cordillera: Insights from the high P–low T metamorphism, in Gómez, J., Pinilla-Pachon, A.O., (eds.), The Geology of Colombia, 2: Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37,
485-498.
Bustamante,
C., Cardona, A., Archanjo, C.J., Bayona,
G., Lara, M., Valencia, V., 2017, Geochemistry and isotopic signatures of
Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A
record of post-collisional arc magmatism: Lithos,
277, 199-209, https://doi.org/10.1016/j.lithos.2016.11.025
Cardona,
A., Valencia, V., Bayona, G., Duque, J., Ducea, M., Gehrels, G.,
Jaramillo, C., Montes, C., Ojeda, G., Ruiz, J., 2011, Early‐subduction‐related
orogeny in the northern Andes: Turonian to Eocene magmatic and provenance
record in the Santa Marta Massif and Rancheria Basin, northern Colombia: Terra
Nova, 23(1), 26-34.
Cardona,
A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani,
U., Muñoz, C., 2014, Geochronology and geochemistry of the Parashi
granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene
plutonism along the SE Caribbean margin: Journal of South American Earth
Sciences, 50, 75-92.
Cardona,
A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J.,
Bustamante, C., Echeverri, S., 2018, The Paleogene
arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic
implications from new and existing geochemical, geochronological
and isotopic data: Tectonophysics, 749, 88-103,
https://doi.org/10.1016/j.tecto.2018.10.032
Chiaradia, M., 2009, Adakite-like
magmas from fractional crystallization and melting- assimilation of mafic lower
crust (Eocene Macuchi arc, Western Cordillera,
Ecuador): Chemical Geology, 265(3-4), 468-487,
https://doi.org/10.1016/j.chemgeo.2009.05.014
Duque-Caro,
H., 1990, The Choco Block in the northwestern corner
of South America: Structural, tectonostratigraphic, and paleogeographic
implications: Journal of South American Earth Sciences, 3(1), 71-84, https://doi.org/10.1016/0895-9811(90)90019-W
Estrada,
J.J., 1995, Paleomagnetism and accretion events in
Northern Andes: Binghamton, U.S.A., University State of New York, Ph.D. Thesis,
172 pp.
Farris,
D.W., Jaramillo, C., Bayona, G., Restrepo-Moreno,
S.A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock,
M. D., Valencia, V., 2011, Fracturing of the Panamanian Isthmus during initial
collision with South America: Geology, 39(11), 1007-1010.
Grajales, J.A., Nieto-Samaniego,
A.F., Barrero Lozano, D., Osorio, J.A., Cuellar, M.A., 2020, Emplazamiento del
magmatismo Paleoceno-Eoceno bajo un régimen transtensional
y su evolución a un equilibrio dinámico en el borde occidental de Colombia:
Revista Mexicana de Ciencias Geológicas, 37(3), 250-268,
http://dx.doi.org/10.22201/cgeo.20072902e.2020.3.1570
León, S., Cardona, A., Parra, M.,
Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia,
V.A., Chew, D., Montes, C., Posada, G., Monsalve, G.,
Pardo‐Trujillo, A., 2018, Transition From Collisional to Subduction-Related Regimes: An Example
From Neogene Panama- Nazca-South America Interactions: Tectonics, 37(1),
119-139, https://doi.org/10.1002/2017TC004785
MacDonald,
W., 1980, Anomalous paleomagnetic directions in the late Tertiary andesitic,
intrusions of the Cauca Depression, Colombian Andes: Tectonophysics, 68(3-4),
339-348.
Maya, M., 1992, Catálogo de las
dataciones isotópicas en Colombia: Boletín Geológico de Ingeominas,
31(1-3), 127-187.
Montes,
C., Bayona, G., Cardona, A., Buchs,
D. M., Silva, C., Morón, S., Hoyos,
N., Ramírez, D., Jaramillo, C., Valencia, V., 2012, Arc‐continent collision and
orocline formation: Closing of the Central American
seaway: Journal of Geophysical Research: Solid Earth, 117(B4), Article B4.
Montes,
C., Rodriguez-Corcho, A.F., Bayona,
G., Hoyos, N., Zapata, S., Cardona, A., 2019,
Continental margin response to multiple arc-continent collisions: The northern
Andes-Caribbean margin: Earth-Science Reviews, 198, 102903,
https://doi.org/10.1016/j.earscirev.2019.102903
Pardo-Trujillo,
A., Cardona, A., Giraldo, A.S., León, S., Vallejo,
D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J., Echeverri, S., Barbosa-Espitia,
A., Slattery, J., Salazar-Ríos, A., Botello, G.E., Celis,
S. A., Osorio-Granada, E., Giraldo-Villegas, C.A.,
2020, Sedimentary record of the Cretaceous–Paleocene
arc–continent collision in the northwestern Colombian
Andes: Insights from stratigraphic and provenance constraints: Sedimentary
Geology, 401, 105627, https://doi.org/10.1016/j.sedgeo.2020.105627
Piedrahita, V.A., Bernet, M., Chadima, M., Sierra, G.M., Marín-Cerón,
M.I., Toro, G.E., 2017, Detrital zircon fission-track thermochronology and
magnetic fabric of the Amagá Formation (Colombia):
Intracontinental deformation and exhumation events in the northwestern
Andes: Sedimentary Geology, 356, 26-42, https://doi.org/10.1016/j.sedgeo.2017.05.003
Pindell,
J.L., Kennan, L., 2009, Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference
frame: An update: Geological Society, London, Special Publications, 328(1),
1-55, https://doi.org/10.1144/SP328.1
Restrepo,
J.J., Toussaint, J.F., 1990, Cenozoic arc magmatism of northwestern
Colombia, in Kay, S.M., Rapela, C.W.
(eds.), Plutonism from Antarctica to Alaska: The geological Society of America,
241, 205-212.
Salazar,
C.A., Bustamante, C., Archanjo, C.J., 2016, Magnetic
fabric (AMS, AAR) of the Santa Marta batholith (northern Colombia) and the
shear deformation along the Caribbean Plate margin: Journal of South American
Earth Sciences, 70, 55-68, https://doi.org/10.1016/j.jsames.2016.04.011
Salazar, G., James, M., Tistl, M., 1991, El Complejo Santa Cecilia – La Equis:
Evolución y acreción de un arco magmático en el norte de la Cordillera
Occidental, Colombia, in Memorias
del simposio de magmatismo andino y su marco tectónico: Manizales, Colombia,
Instituto Nacional de Investigaciones Geológico Mineras, 142-160.
Sánchez-Celis, D., Frantz, J.C., Charão-Marques, J.,
Barrera-Cortés, M., 2018, Petrología del Batolito de Acandí y cuerpos
asociados, Unguía-Chocó, Colombia: Boletín de
Geología, 40(1), 63-81, https://doi.org/10.18273/revbol.v40n1-2018004
Suter,
F., Sartori, M., Neuwerth, R., Gorin,
G., 2008, Structural imprints at the front of the Chocó-Panamá indenter: Field
data from the North Cauca Valley Basin, Central Colombia: Tectonophysics,
460(1-4), 134-157.
Vallejo,
C., Winkler, W., Spikings, R.A., Luzieux,
L., Heller, F., Bussy, F., 2009, Mode and timing of
terrane accretion in the forearc of the Andes in Ecuador: Geological Society of
America Memoirs, 204, 197-216.
Vallejo,
C., Spikings, R.A., Horton, B.K., Luzieux,
L., Romero, C., Winkler, W., Thomsen, T.B., 2019, Late Cretaceous to Miocene
stratigraphy and provenance of the coastal forearc and Western Cordillera of
Ecuador: Evidence for accretion of a single oceanic plateau fragment, in
Horton, B.K., Folguera, A., (eds.), Andean Tectonics:
Elsevier, 209-236.
Vallejo,
C., Almagor, S., Romero, C., Herrera, J.L., Escobar,
V., Spikings, R.A., Winkler, W., Vermeesch,
P., 2020, Sedimentology, Provenance and Radiometric Dating of the Silante Formation: Implications for the Cenozoic Evolution
of the Western Andes of Ecuador: Minerals, 10(10), 929, https://doi.org/10.3390/min10100929
Villagómez,
D., Spikings, R., 2013, Thermochronology and
tectonics of the Central and Western Cordilleras of Colombia: Early
Cretaceous–Tertiary evolution of the northern Andes: Lithos,
160, 228-249.
Villagómez,
D., Spikings, R., Magna, T., Kammer,
A., Winkler, W., Beltrán, A., 2011, Geochronology, geochemistry and tectonic evolution of the Western and
Central cordilleras of Colombia: Lithos, 125(3-4),
875-896, https://doi.org/10.1016/j.lithos.2011.05.003
Wegner,
W., Wörner, G., Harmon, R.S., Jicha,
B.R., 2011, Magmatic history and evolution of the Central American Land Bridge
in Panama since Cretaceous times: Geological Society of America Bulletin,
123(3–4), 703-724, https://doi.org/10.1130/b30109.1
Wright,
N.M., Seton, M., Williams, S.E., Müller, R.D., 2016, The Late Cretaceous to
recent tectonic history of the Pacific Ocean basin: Earth-Science Reviews, 154,
138-173, https://doi.org/10.1016/j.earscirev.2015.11.015
Zapata-García,
G., Rodríguez-García, G., 2020, New Contributions to Knowledge about the
Chocó–Panamá Arc in Colombia, Including a New Segment South of Colombia in
Gómez, J., Mateus-Zabala, D. (eds.), The Geology of
Colombia, 3: Servicio Geológico
Colombiano, Publicaciones Geológicas Especiales 37,
417-450, https://doi.org/10.32685/pub.esp.37.2019.14