
210

Sosa-Ceballos et al.

	 RMCG	 |	 v.	 38	 |	 núm.	 3	 |	 www.rmcg.unam.mx	 |	 DOI: http://dx.doi.org/10.22201/cgeo.20072902e.2021.3.1668

Sosa-Ceballos, G., Boijseauneau-López, M.E., Pérez-Orozco, J.D., Cifuentes-Nava, G., Bolós, X., Perton, M., Simón-Velázquez, D., 2021, Silicic magmas in the 
Michoacán-Guanajuato volcanic field: An overview of plumbing systems, crustal storage, and genetic processes: Revista Mexicana de Ciencias Geológicas, v. 38, 
núm. 3, p. 210-225.

ABSTRACT

The origin of silicic rocks in the Michoacán-Guanajuato volcanic 
field (MGVF) has been understudied since the volcanic field attracted 
the attention of researchers. Using geochemical, petrological and struc-
tural data from the literature, here we propose a model for the origin of 
silicic magmas. We found that all volcanic rocks known to date in the 
MGVF can be divided in 40 % andesite, 33 % basaltic andesite, 15 % 
basalt, 2 % trachybasalt to trachyandesite, and 10 % dacite-rhyolite. The 
structural systems that deformed the crust in the MGVF are NNW-
SSE-oriented normal faults of the Taxco-San Miguel de Allende fault 
system, developed during the Oligocene, and the Morelia-Acambay 
fault system consisting of ENE-SSW to E-W sinistral strike-slip faults 
developed during the Oligocene-Miocene. In addition to bibliographic 
data, we present a gravimetric-magnetometric model to investigate the 
characteristics of the local basement where magmas acquire their final 
silicic composition, and a seismic tomography model to investigate the 
deep plumbing system that contribute to form the silicic rocks emplaced 
on the surface. The only report of assimilation experiments we found 
in the MGVF literature suggest that plagioclase and pyroxene are more 
easily digested than quartz by hotter magmas. The digestion of these 
mineral phases has a direct consequence on the generation of dacites 
and rhyolites. We propose that regardless of the genesis of andesitic 
melts, such intermediate magmas arrive to the upper-crust and are 
forced to evolve within local compression zones where they melt the 
local granitic basement and form crystal mushes. The compositional 
variability of silicic rocks in the MGVF is a consequence of the variable 
mixing between the intermediate magmas and the granitic partial melts. 

Key words: silicic magma; crystal mush, granites; hydrothermal 
experiments; gravimetry; magnetometry; structural systems; magma 
chamber; Michoacán-Guanajuato volcanic field; Mexico.

RESUMEN

El origen de las rocas silícicas en el Campo Volcánico Michoacán-
Guanajuato (CVMG) ha sido poco estudiado desde que este campo 
volcánico atrajo la atención de los investigadores. En este trabajo 

usamos datos geoquímicos, petrológicos y estructurales de la literatura 
para proponer un modelo para el origen de los magmas silícicos en el 
CVMG. Encontramos que las rocas que se conocen en el CVMG pueden 
ser divididas en 40 % andesitas, 33 % andesitas-basálticas, 15 % basal-
tos, 2 % traqui-andesitas-basaltos y 10 % dacitas-riolitas. Los sistemas 
estructurales que han deformado la corteza del CVMG son el sistema 
de fallas Taxco-San Miguel de Allende compuesto por fallas normales 
orientadas al NNW-SSE y el sistema de fallas Morelia-Acambay con fallas 
transcurrentes sinistrales orientadas al ENE-SSW y al E-W. Además 
de los datos geoquímicos y estructurales de la literatura, realizamos un 
modelo gravimétrico-magnetométrico para investigar las características 
del basamento en el cual los magmas adquieren su composición silícica, 
posiblemente mediante la mezcla de magmas intermedios y fundidos 
parciales de rocas graníticas, y una tomografía sísmica para investigar 
el sistema profundo de conductos donde se origina el magma que forma 
las rocas silícicas que se emplazan en la superficie. El único trabajo 
que encontramos en la literatura del CVMG acerca de experimentos de 
asimilación sugiere que la plagioclasa y el piroxeno pueden ser digeridos 
más fácilmente que el cuarzo por un magma caliente. La digestión de 
estas fases minerales tiene una consecuencia directa para la generación 
de dacitas y riolitas. Apoyándonos en los modelos reconocidos para 
generar andesitas en el centro de México, proponemos que los magmas 
intermedios arriban a la corteza superior y son forzados a evolucionar 
mediante cristalización y asimilación en zonas locales de compresión. Las 
zonas de compresión son producidas en la intersección de dos sistemas 
estructurales, después de la compresión puede ocurrir una reorientación 
de los esfuerzos, la cual permite que los magmas silícicos asciendan a 
la superficie.

Palabras clave: rocas silícicas; asimilación de granitos; experimentos 
hidrotermales; gravimetría; magnetometría; cámara magmática; campo 
volcánico Michoacán-Guanajuato; México.

	

INTRODUCTION

The origin and distribution of felsic volcanism along the Michoacán-
Guanajuato Volcanic Field (MGVF) is not completely understood. The 
MGVF is recognized worldwide as one of the biggest monogenetic 
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volcanic fields on Earth and as homeland of Parícutin volcano, the 
only scoria cone studied since its inception and through its entire 
evolution (Foshang and González, 1956). Probably less famous abroad, 
but remarkably historic within the MGVF, is Jorullo volcano, one of 
the volcanoes climbed by A. von Humbold during his expedition to 
America. A high percentage of volcanoes within the MGVF resemble 
Parícutin’s volcanic style, and most analyzed rocks (88 %, see references 
through text) fall within a compositional cluster characterized by mafic 
to intermediate compositions.

Given the overwhelming volume of mafic-intermediate rocks, 
felsic volcanic products (dacite-rhyolite) have been ignored in terms 
of their genesis and the magmatic processes that integrated their final 
composition. As opposed to intermediate rocks, silicic rocks are not 
ubiquitous in the MGVF, they are scarce, clustered in few locations 
and erupted in a wide span of time (see below). Understanding their 
distribution and the processes that differentiate their chemical com-
position can contribute to shed light on the genesis of felsic magmas 
in other volcanic monogenetic fields in Mexico and around the 
world.

In this contribution in honor to our friend Víctor Hugo Garduño 
Monroy, we present the results of a bibliographic research on rock 
chemistry, structural geology and experimental petrology of the MGVF. 
The main aim for using available published data is to establish the 
relative abundance of silicic rocks within the MGVF, and the relation 
between structural systems and the magmatic evolution in central 
Mexico. In addition, we discuss the results of two geophysical surveys; 
a seismic tomography to visualize at depth the plumbing system that 
bring magmas to the upper-crust, and a gravimetric-magnetometric 
study to investigate the depth at which the magmas might acquire their 
final silicic composition.

GEOLOGIC BACKGROUND

The MGVF is located in the central portion of the Trans-Mexican 
volcanic belt (TMVB), a continental arc built on the southern edge of 
the North America plate, which overrides the Rivera microplate and 
the northern part of the Cocos plate (Figure 1). The MGVF was origi-
nally described by Hasenaka and Carmichael (1985) as a monogenetic 
volcanic field formed by more than 1200 volcanoes, most of them 
monogenetic, covering an area of approximately 40000 km2. Scoria 
cones are ubiquitous along the volcanic field and are coeval in some 
locations with stratovolcanoes (Ownby et al., 2011), medium-sized 
shield volcanoes (Hasenaka, 1994; Osorio-Ocampo et al., 2018), fissural 
lava flows (Hasenaka and Carmichael, 1985a), maar-craters (e.g., Valle 
de Santiago; Zacapu), and felsic domes (e.g., Pérez-Orozco et al., 2018; 
Osorio-Ocampo et al., 2018). Inception of volcanism in the MGVF is 
dated at ~7 Ma (Avellán et al., 2020); although, the MGVF is worldwide 
known because of its recent eruptions: Parícutin in 1943–1952 and 
Jorullo in 1759–1774. 

Rocks from the MGVF are mainly calc-alkaline (Hasenaka and 
Carmichael, 1987; Gómez-Tuena et al., 2005; Gómez-Tuena et al., 
2018), although some intraplate and potassic rocks occur (Cavazos-
Tovar, 2006; Ortega-Gutierrez et al., 2014b; Losantos et al., 2017). Rocks 
are predominantly intermediate, 40 % of all known rocks are andesites 
and 33 % are basaltic-andesites (Figure 2). Previous works proposed 
that the mafic and intermediate magmas erupted in the MGVF were 
derived from a combination of partial melting of a heterogeneous 
mantle doped with fluids from subducted sediments and oceanic crust 
(Larrea et al., 2019; Gilbaud et al., 2019), partial melting of the deep 
crust (Ownby et al., 2011), assimilation and fractional crystallization 
(AFC) processes (McBirney et al., 1987; Ceibrá et al., 2011; Losantos 

Figure 1. Regional tectonic regime of Central Mexico that shows the active subduction of the Rivera and Cocos Plates beneath the North American Plate at the 
Middle-American Trench. The dotted white line depicts the boundary of the Trans-Mexican Volcanic Belt (TMVB). The Michoacán-Guanajuato volcanic field 
(MGVF) and major volcanoes are shown for reference: La Pimavera caldera (LP), Colima (Co), Tancítaro (Ta) and Jorullo (Jo), the latter two located in the MGVF, 
Amealco caldera (Am), Huichapan caldera (Hc), Acoculco caldera (Ac), Los Humeros caldera (Hm), Nevado de Toluca (Nt), Popocatépetl (P), La Malinche (M), 
Cofre de Perote (Pe), Pico de Orizaba (O), San Martín (SM). GDAL: Guadalajara city, EPR: East Pacific Rise.
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et al., 2017), and fractional crystallization (Luhr and Carmichael, 
1985; Johnson et al., 2008). The origin of more felsic magmas in the 
MGVF has been related to the crystallization of mafic magmas and 
the assimilation of middle-crust lithologies (Ownby et al., 2011), and 
to the assimilation of upper-crust granites favored by extensional-
transtensional tectonics (Pérez-Orozco et al., 2018). 

The MGVF occurs in an extensional tectonic environment as-
sociated with plate boundary processes such as the rollback of the 
Cocos Plate (Singh and Pardo, 1993) and the sinistral rotation of 
the Michoacán block due to the oblique convergence of the Cocos 
plate relative to the North American plate. The crustal configuration 
underneath Michoacán-Guanajuato is defined by a complex arrange-
ment of fault zones that control the kinematics of different regional 
blocks (e.g., Johnson and Harrison, 1989, 1990; Pasquaré et al., 1991; 

Garduño-Monroy et al., 2009; Guilbaud et al., 2012; Kshirsagar et 
al., 2016) and the distribution of magmatism (Avellán et al., 2020; 
Gómez-Vasconcelos et al., 2020; Olvera-García et al., 2020). The 
MGVF is deformed by two main fault systems, the Morelia-Acambay 
fault system (MAFS) with ENE-WSW and NE trending faults and the 
Taxco-San Miguel fault system (TSMFS) with NNW-SSE and NW-SE 
striking faults (Alanís-Álvarez et al., 2002). The MAFS is displaced by 
reactivated older TSMFS faults oriented to the NNW. 

DATA COLLECTION METHODS

We obtained structural data from 38 articles and 11 theses pub-
lished during the 1985–2020 period. We found 466 whole-rock analyses 
published in 39 articles and 4 theses during the 1954–2020 period. 
Data were extracted from the GEOROC global compilation. For the 
sake of space and fluency we report the data and references to articles 
and theses in Supplementary File S1. We also used experimental data 
from one thesis (Boijseauneau-López, 2018). We recognize that overall, 
volcanic products are not widely studied in terms of stratigraphy and 
distance from the vent; in most works, with only one sample is pre-
tended to characterize a full deposit without acknowledging that lava 
fronts could be different to the last emissions tapped from the vent. 
The published works we used for this investigation lack information 
to ascertain if the deposits sampled are homogeneous or comprise dif-
ferent compositional domains. Thus, our results represent minimum 
relative percentages.

GEOPHYSICAL METHODS

We used one ambient noise tomography from Spica et al. (2016). 
The tomography was performed around Colima volcano with a hori-
zontal resolution of ~14×16 km2 that results from the inversion of the 
group and phase dispersion curves of the fundamental Rayleigh and 
Love surface wave. We superimposed the historical seismicity reported 
since 1900 and the down-going slab of the Coco's plate identified from 
the Wadati-Benioff zone (Figure 3).
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Figure 2. Total alkalis vs. SiO2 diagram for rocks of the Michoacán-Guanajuato 
volcanic field (MGVF). Lavas= blue circles, ignimbrites= red circles. The whole 
rock composition of silicic rocks, granite xenoliths and more mafic rocks are 
presented in Supplementary File S1. Data were extracted from http://georoc.
mpch-mainz.gwdg.de 

Figure 3. Shear wave velocity tomography for the Colima-Tancítaro region. Left: location of earthquakes (black dots) along the section represented by the 
tomography. Top right: topography of the section. Bottom right: vertical section of the shear wave velocity (Vs) tomography. Shear wave velocity is color coded. 
Historical earthquakes are superimposed (empty circles); the size of the circles is proportional to the earthquake magnitude. The Cocos slab is shown as a red line.
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Magnetometry data were acquired with an Overhauser Gem 
Systems GSM-19WG magnetometer according to the methods of 
López-Loera et al. (2021). Gravimetry data were acquired with a 
Scintrex Autograv CG5 gravimeter. Each point was georeferenced 
with a PENTAX G3100-R2 GPS. We performed a reduction to the 
pole (Baranov y Naudy, 1964) to all magnetic anomalies acquired in 
the Parícutin area during the 1943-1952 period. Geomagnetic reduc-
tions were performed with data from the Geomagnetic Observatory 
of Teoloyucan. In order to reduce the short wavelength signals, the 
magnetic and the Bouguer anomalies were treated with a 50 m ascend-
ant analytic continuum (Henderson, 1970); afterwards, we applied a 
regional-residual separation (LaFehr y Nabmposighian, 2012). 

The 2D model was generated with the GM-SYS software. The 
anomalies are modeled through polynomial bodies with variable 
density and magnetization. Input values are as follows: 1) magnetic 
and density susceptibility from Telford et al. (1990); 2) Foshang and 
González (1956) observations; 3) magnetic parameters from Urrutia-
Fucugauchi et al. (2004); 4) topographic model from Corona-Chávez 
(2002).

GEOPHYSICAL RESULTS

Figure 3 shows a vertically polarized shear wave (SV) tomography 
with a nearly horizontal anomaly at 35 km depth. The anomaly begins 
NE of Colima volcano and goes toward the Tancítaro area. The shear 
wave anomaly is a zone with lower velocity than the surrounding 
velocity average; it is more pronounced on the vertically polarized 
shear wave (SV) tomography than on the horizontally polarized shear 
wave (SH) tomography (only visible on the anisotropic tomography 
and not shown here). The difference in both polarizations indicates 
that the propagation of the SV wave is inhibited when compared to 
the SH wave propagation. 

The magnetometry-gravimetry conceptual model is formed by two 
components (Figure 4). The first one comprises an anomaly at 5000 m 
depth below the sea level and was generated with methods from Bott 
and Smith (1958) and Blakely (1995). The second component sug-
gests an eruptive sequence (Table 1) according to the descriptions of 
Foshang and González (1956), Corona-Chávez (2002) and Alcantara-
Ayala (2010).

COMPOSITION AND DISTRIBUTION OF SILICIC 
VOLCANISM IN THE MGVF

The compositional range of the volcanic rocks found in the MGVF 
literature is as follows: 40 % andesite, 33 % basaltic andesite, 15 % basalt, 
2 % trachybasalt to trachyandesite and 10 % dacite-rhyolite. Although 
our study might not account for some unpublished data and the com-
position of most rocks of the MGVF has not been analyzed, the known 
volume of mafic-intermediate rocks ensures an underwhelming relative 
percentage of silicic rocks. Silicic magmatism in the MGVF comprises 
45 known rock samples that range in composition from dacite (63–71 
SiO2 wt.%) to rhyolite (70.5–76 SiO2 wt.%) (Figure 2). 

The silicic samples comprise 37 lavas and 8 ignimbrites. We made 
sure to include only ignimbrites whose vents are, with high probabil-
ity, located within the MGVF. Silicic lavas occur in three zones: the 
first zone (Z1) comprises El Tzirade range, El Águila, and La Muela 
volcanoes (between Pátzcuaro and Morelia), the second zone (Z2) is 
around Tancítaro stratovolcano, and the third zone (Z3) is located NW 
of Zacapu (Figure 5). Silicic rocks were formed between 2.9 and 0.003 
My (Cardona-Melchor, 2015; Reyes-Guzmán, 2017; Kshirsagar, et al., 

2015; Osorio-Ocampo, et al., 2018; Reyes-Guzmán, 2020). We did not 
find any relation between age, composition, and location. All silicic 
rocks yield characteristics of typical arc rocks: high LILE-LREE values, 
negative anomalies of Nb-Ta, and positive anomalies of Pb (Figure 
6). All lavas, mostly dacitic, lack Eu anomalies, whereas ignimbrites, 
mostly rhyolitic, show a negative Eu anomaly. 

DISCUSSION 

The petrogenesis of silicic magmas from the MGVF is a pending 
task. Reported petrogenetic studies are exclusive of mafic-intermediate 
magmas in the Tancítaro-Jorullo areas (e.g., Ownby et al., 2011; Larrea 
et al., 2019, Larrea et al., 2021; Gilbaud et al., 2019; Johnson et al., 
2008) and of some isolated locations in the NE border of the volcanic 
field (Losantos et al., 2017). Although the genesis of silicic rocks in the 
MGVF has been barely explored (Ownby et al., 2011; Pérez-Orozco 
et al., 2018), the mechanisms that produce dacites and rhyolites are 
worldwide recognized. Overall, silicic magmas can be created through 
partial melting of the low-middle crust + AFC processes (e.g., Petrone et 
al., 2014), melt extraction from a crystal mush (Lipman and Bachmann, 
2015; Bachmann and Huber, 2016), remobilization of granites, near 
or below the solidus by heating events (Wolff and Ramos, 2013), and 
rejuvenation of partially crystallized granites produced by hydrous 
mafic injections (e.g., Zou and Ma, 2020). 

Given the overall recognition that magmas from central Mexico 
are generated in a subduction zone (e.g., Gómez-Tuena et al., 2018), 
on this work we assume that a series of calc-alkaline basaltic magmas 
evolved by different mechanisms to andesitic melts and reached the 
medium-upper crust below the MGVF. We then consider silicic rocks 

Event / Rock Symbol Magnetic 
susceptibility

Density
(kg/m3)

120145  0.0013 1500

080144  0.0088 2400

201043  0.109–0.035 3300

100743  0.1653 2700

270243  0.1614 2750

Andesite 0.17 2700

Granite 0.15–0.16 2850

Dike / Lava Los Hornitos plateau: 0.3
Main crater: 0.001

Sapichu: 0.5

2500
2500
2750

Hidrothermal 
alteration

0.17 1300

Table 1. Input parameters for the magnetometry-gravimetry 2D model of the 
Parícutin area. Parícutin events are named after the eruption date (DDMMAA 
format, e.g., 120145).
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Figure 4. 2D model of Parícutin volcano area based on magnetic and density susceptibilities (Table 1). a) Architecture of the Parícutin cone, the differences in the 
local basement (andesites vs granites) and the anomaly at depth confirmed by density and magnetic susceptibilities. Although the geometry of the anomaly at depth 
is idealized, we suggest it represents a lateral extension of the Tancítaro magma reservoir; b) Close up of the Parícutin cone; c) and d) adjustments of the observed 
magnetic anomaly and the observed Bouguer anomaly; anomalies were calculated with the GM-SYS program (Geosoft, 2013).
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compressive zones parallel to the maximum stress where magma can 
be trapped and forced to evolve. A reorientation of local stress, or the 
formation of tensional faults in a transtensional system, would allow 
the ascent of magma and its eruption would proceed, even for silicic 
degassed magmas.

However, compressional stress is not the only mechanism to trap 
magmas, stress barriers could contribute, and in fact, might act alone. 
During decompression, magma could be laterally diverted along 
regional tectonic structures or high-density bodies produced by old 
volcanic roots or batholiths (e.g., Menand, 2008; Martí et al., 2016). 
Lateral magma entrapments could grow into magma chambers if 
magma-heat supply reach critical conditions; if magma-heat supply 
is hindered, magma cools and crystallize. If the rocks hosting magma 
in sills and dikes cannot hold eruptions, due to overpressure, or the 
local stress field is modified, eruption proceeds (e.g., Martí et al., 2016; 
Huber et al., 2019).

Both mechanisms, compression and stress barriers, seem to be 
acting over the MGVF. The intersection of two orthogonal fault 
systems in the MGVF (ENE-WSW and NNW-SSE) generates extension 
in the NW-SE direction (Suter et al., 2001; Ego and Asan, 2002). 
The kinematics of the ENE-WSW faults is inferred as normal and 
transtensional with a sinistral component (Suter et al., 2001; Suter, 2016; 
Garduño-Monroy et al., 2009); this same extension has reactivated 
NNW-SSE faults (Avellán et al., 2020; Gómez-Vasconcelos et al., 2020). 
These orthogonal fault systems exert control on the NE-SW alignment 

in the MGVF as derived from silica-rich intermediate magmas forced 
to evolve within diverse structural systems. Magmas were trapped in 
compression zones and partially melted the granitic hosting rocks to 
form crystal mushes (e.g., Huber et al., 2011; Cashman et al., 2017; 
Zou and Ma 2020). Mixing between the intermediate magmas and the 
granite partial melts formed the silicic rocks.

Tectonic control on the production of silicic compositions
Some monogenetic volcanic fields around the world (e.g., San 

Francisco, Higashi-Izu, Kaikohe-Bay and Chichinautzin volcanic 
fields) contain rocks with chemical compositions similar to those of 
the MGVF; they all contain calc-alkaline rocks, a small portion of 
alkaline rocks and some have granitic local basements (e.g., Tanaka et 
al., 1986; Nichols et al., 2012). We found two common characteristics 
in the examined monogenetic volcanic fields: 1) the volcanic fields are 
located at the intersection of two or more fault systems, at least one of 
which has strike-slip movement (e.g., Fenton and Niederman 2014; 
Nichols et al., 2012.); 2) silicic magmas are created through partial 
melting of the mantle and AFC processes in the crust (e.g., Tanaka et 
al., 1986; Schmidt et al., 2016).

Magma movement and accumulation is considered to be controlled 
by local and regional stress fields, following trajectories normal 
to the minimum compressive stress, and parallel to the maximum 
compressive stress (e.g., Tibaldi and Pasquarè, 2008; Bolós et al., 
2015; Martí et al., 2016). Orthogonal fault systems can create local 

Figure 5. Digital elevation model of the Michoacán-Guanajuato volcanic field (MGVF) showing the location of silica-rich andesites (black squares), silicic lavas 
(blue circles) and ignimbrites (red circles). The rocks located between Morelia and Pátzcuaro define the Z1, the rock near Tancítaro defines the Z2 and the rocks 
NW of Zacapu define the Z3. 
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of volcaninc cones (Garduño-Monroy et al., 2009; Mendoza-Ponce et 
al., 2018) and on the final composition of silicic rocks where local stress 
produce compression (Pérez-Orozco et al., 2018). 

Local compression zones have been described in the MGVF. 
Pérez-Orozco et al. (2018) proposed that felsic volcanism is located 
in transtensional zones of maximum extension (NNE-SSW), where 
local compression trap magmas. Thus, the question is if other silicic 
rocks in the MGVF are created by similar processes. Local compression 
zones are located in the central-northwestern part of the volcanic field, 
along the intersection of the Morelia-Acambay fault system (ENE-
WSW) and the Taxco-San Miguel de Allende fault system (NNW-SSE), 
and in the southwestern part of MGVF along the intersection of the 
Chapala-Oaxaca (NW-SE) fault system and NE-SW trend faults. Such 
compressional zones can be found along the Z1 zone, between Morelia 
and Pátzcuaro (e.g., Pérez-Orozco et al., 2018). The Z3 zone, near 
Zacapu, is structurally similar to Z1. The Zacapu area is affected by the 

Cuitzeo Fault System (ENE – WSW) and the Querétaro-Taxco Fault 
System (NNW– SSE) (Kshirsagar et al., 2016). The western boundary 
of the Zacapu graben contains high-SiO2 andesitic lavas, silicic rocks 
and monogenetic volcanoes dissected by E-W and NW-SW trending 
faults (Figure 7). Northwest of the Z3 zone occurs the Penjamillo 
graben, a NNW-oriented regional structure related to the Basin and 
Range province (Suter et al., 2001). 

We thus suggest that local compressions act over the Z1 and Z3 
zones to trap andesitic magmas and make them evolve to dacites-
rhyolites (Figure 8). The only rock found in the Z2 might be reflecting 
the same mechanism that form the silicic rocks in Z1 and Z3, but in 
this case, associated to the Chapala-Oaxaca regional fault and NE-SW 
trend faults

We recognize that compression might not be acting alone, and 
the batholith below the MGVF could act as a stress barrier forcing the 
magmas to accumulate. In the following sections, we show evidence 

Figure 7. Digital elevation model of the surroundings of the Z3. Note the NE-SW faults and the N-S Penjamillo graben. Dotted lines show cone alignments most 
likely following the trace of ENE-WSW and N-S faults. The intersection of these systems of faults might be the stress barrier that trap intermediate magmas and 
force them to evolve to silicic melts. 
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of how granitic bodies below the MGVF might influence the evolution 
of intermediate magmas to produce the silicic rocks.

Depth of generation of silicic magmas
We used gravimetric-magnetometric data to investigate the 

rocks conforming the local basement of the MGVF. Classic works on 
Parícutin and Jorullo volcanoes (Wilcox, 1954; Luhr and Carmichael, 
1985; McBirney et al., 1987), and the surroundings of Pátzcuaro 
(Corona-Chávez et al., 2006) reported the occurrence of upper-

crustal granitic xenoliths in lavas. Moreover, intrusive bodies (diorites, 
granodiorites and granites) of Oligocene age crop out in the Jorullo 
area (Guilbaud et al., 2011). Although granite xenoliths have not been 
reported in the Zacapu area, quartz xenocrysts are reported in andesitic 
lavas (Reyes-Gúzman et al., 2018; Ramírez-Uribe et al., 2019). Thus, 
the overall thought is that the local basement below the MGVF, at least 
in the Pátzcuaro-Tancítaro-Zapacu-Jorullo areas, is granitic. 

Our gravimetric-aeromagnetic data in the surroundings of 
Parícutin volcano indicate the granitic basement is located 2.7 km 

Figure 8. Tectonic evolution of the main structural systems in the Michoacán-Guanajuato volcanic field (MGVF). a) NNW-SSE-oriented normal faults of the Taxco-
San Miguel de Allende fault system (TSAFS) developed during the Oligocene; b) The Morelia-Acambay fault system (MAFS) developed ENE-SSW to E-W sinistral 
strike-slip faults during the Oligocene-Miocene and displaced faults of the TSAFS; c) From middle Miocene to present, extension in the MGVF area developed 
normal faults with a minor left-lateral component in the MAFS and dextral strike-slip faults in the TSAFS. Since the Quaternary, the kinematics is summarized as 
a left-lateral transtensional system, developing “en echelon” and “pull apart” structures, displacing and reactivating older NNW faults as transfer zones (Suter et al., 
1992, 2001; Ego and Ansan, 2002; Garduño-Monroy et al., 2009; Avellán et al., 2020). d) The intersection of fault systems, which produce transfer zones, generated 
local compression zones in the crust. The regional extension (σ3; minimum compressional stress) caused normal faults and fractures that facilitated the ascent of 
magma in areas related to “en echelon” structures.
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below the surface and can be found at least down to 8 km depth 
(Figure 4). Thus, if magmas are trapped and assimilate the local base-
ment, we suggest that these magmas are hosted by granitic rocks. If 
magmas get trapped in upper crust compressional zones and evolve 
to more silicic compositions, their reservoirs must be able to grow, 
holding the expulsion of magma, until they become eruptable. The 
depth of such conditions has been indirectly determined for decades 
through experimental phase diagrams and melt inclusions analyses 
(e.g., Gardner et al., 1995; Arce et al., 2006; Sosa-Ceballos et al., 2014). 
Over the decades, 150–250 MPa (~6–10 km) and 4–6 H2O wt.% have 
been indicated as common pre-eruptive conditions for intermediate-
felsic magmas. More recently, Huber et al. (2019) and Townsend and 
Huber (2020) proposed that chambers can form and grow at 150–250 
MPa as a response to neutral bouyancy, rheological contrast and the 
reorientation of stress. The main idea is that magma recharge deform 
the upper-crust in a ductile fashion, so that pressure increments are 
hindered and eruptions are inhibited. Shallower accumulations of 
magma occur, but they are generally transient, whereas deeper accu-
mulations are the feeder systems of the 150–250 MPa magma chambers. 
We used our combined gravimetric-magnetic results in the Parícutin 
area to provide some insights about magma storage below the MGVF.

An anomaly observed and calculated below Parícutin (~7.5 km 
depth) is proposed from two geophysical surveys (Figure 4). Using 
two different geophysical methods reduces interpretation ambigui-
ties and enhance a single solution for physical anomalies. Given the 
composition of the rocks and the monogenetic nature of Parícutin, we 
do not expect that the anomaly shown in Figure 4 represents a magma 
chamber that accumulated and fed the magma of the 1943–1952 erup-
tion. Instead, we think this anomaly might represent a lateral extension 
of the Tancítaro volcano magma chamber, formed by partially melted 
sills and dikes. Our methods lack the resolution to resolve the geometry 
of this reservoir. Although this zone could act as a stress barrier and 
retain a portion of magma tapped during the Parícutin eruption, we 
must consider that feeding conduits are not necessarily located straight 
below the vent and they can propagate oblique to the surface. Regardless 
of its origin, the anomaly strongly suggests that the observed depth 
(~7.5 km) is prone to accumulate magma within granitic host rocks. 

Partial melting of granitic rocks to produce silicic magmas

Binary models and trace elements
	 The mixing of magmas, or digestion of rocks by hot magma, 

can be modeled on the basis of binary linear trends that characterize 
the amount of mixing between two end members (e.g., Sosa-Ceballos 
et al., 2015). We performed binary models using silica-rich andesites, 
dacites-rhyolites and granites, the latter found as xenoliths in lavas, to 
explain the chemical variability of the silicic rocks in the MGVF. 

We selected a series of elements that could be enriched in granites 
and could be traceable in a series of rocks produced by the assimilation 
or partial melting of granites (major elements, Sc, Zr, Th, U, Rb, Sr, Ba, 
Cs, La, Lu, Hf, Y, Nb, Zn, Cu). We recognize that fractional crystal-
lization could enrich these elements in a similar fashion. Nevertheless, 
the trends in Figure 9 indicate that fractional crystallization cannot 
explain the compositional variability of the silicic and silica-rich 
andesitic rocks. Instead, partial melting appears to be a dominant 
factor (Figure 9).

To approximate how partial melting contribute to the generation of 
silicic magmas, we modeled the chemical variation of silicic rocks (>63 
wt.% SiO2) (Supplementary File S2) using as end memebers silica-rich 
andesites (61–62 wt.% SiO2) and five different granites (data from Luhr 
and Carmichael, 1985; Cardona-Melchor, 2015; Kshirsagar, et al., 2015; 
Rasoazanamparany et al., 2016; Reyes-Guzmán, 2017; Osorio-Ocampo 
et al., 2018; Pérez-Orozco et al., 2018; Ramírez-Uribe et al., 2019; 
Reyes-Guzmán, 2020; Avellán et al., 2020); the location of sampling 
sites are shown in Figure 5. Silica-rich andesites were chosen given their 
co-occurrence with silicic rocks (Figure 5) and because their composi-
tion would produce more silicic magmas with the minimum amount of 
assimilation or mixing with partial melts of granitic rocks. We recognize 
that silica-rich andesites could also be a product of assimilation, but 
this idea coupled to an experimental petrology study will be presented 
in a separate contribution. We also recognize that the composition of 
granites does not represent low degree partial melts, hence our models 
only represent the mixing between silica-rich andesite and granitic melt 
produced by advanced degrees of partial melting.

We calculated the correlation factor of the linear models for each 

Figure 9. La/Sm vs. La and Rb/Ba vs. Rb diagrams for rocks of the Michoacán-Guanajuato volcanic field. Assuming plagioclase and clinopyroxene as the main 
crystallized phases, the La-Sm and Rb-Ba trends suggest partial melting dominate over fractional crystallization. Higher La/Sm and Rb/Ba represents low degree 
partial melts. Silicic rocks more enriched than granites in La/Sm and Rb/Ba could be the result of pure low-degree partial melts; less enriched silicic rocks could 
be explained by the mixing of intermediate magmas and granitic partial melts. Lavas: blue circles, ignimbrites: red circles, granites: pentagons, silica-rich andesites: 
squares.
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element as a function of SiO2 content and use it as a proxy of how the 
two end members interacted (Figure 10). Then, we calculated the rela-
tive percentage of elements with correlation factors >0.7 in the models. 
Our proposal is that a higher percentage of elements with correlation 
factors >0.7 yields a higher certainty about the interaction of two end 
members (granites and silica-rich andesites) to produce a series of rocks 
(Figure 10). Overall, the five granites explain better the compositional 
variation of rocks from the Pátzcuaro-Morelia area (Z1) than the vari-
ation in the Zacapu area (Z3). The lack of correlation in the Zacapu 
area could be explained if mixing occurs with multiple end members, 
if the partial melting occurred within a compositionally zoned intru-
sive body, if the basement is locally altered by hydrothermalism or if 
samples contained xenoliths different to the granites. In fact, we did 
not include the ignimbrites in the models because their composition 
is quite variable, and we think some of them might include lithics not 
belonging to the magmatic system. 

The normalized trace element compositions of silica-rich andesites 
and granites suggest that mixing between andesites and partial melts 
produced in a crystal mush contributed to form silicic rocks. Overall, 
silica-rich andesites show a wide range of REE and HFSE concentra-
tion, whereas silicic rocks have less variable trace element abundances 
and are more enriched in LILE (Figure 6). Granites can be grouped 
either with silicic rocks or with the silica-rich andesite with the low-
est elemental concentrations (Figure 6). Even though each silicic rock 
could be produced by variable proportions of granite and silica-rich 
andesite, we focus on Eu anomalies. Eu+2 is well known to substitute 
Ca+2 in plagioclase and clinopyroxene (e.g., Bindeman and Davis, 
2000); all granites and silicic rocks show variable negative Eu anomalies 
(overall granites have more negative anomalies), whereas silica-rich 
andesites lack any Eu anomaly. The intermediate anomalies in the silicic 
rocks could be explained if the silica-rich andesitic melts interacted 
with granites exerting a higher degree of melting on plagioclase, which 
would release Eu and result in less developed Eu negative anomalies in 
the hybrid melt with respect to the granite. Although fractional crystal-
lization of feldspars could produce the same effect, the variability of 

some incompatible elements suggests fractional crystallization play a 
minor role (Figure 9). In order to produce ignimbrites with prominent 
negative Eu anomalies, a granite near to the solidus could be mobilized 
by more mafic injections. Although this process has been proposed 
before (Wolff and Ramos, 2013), we do not have enough information 
to support this hypothesis. 

Experimental petrology
We have an ongoing investigation performing hydrothermal-

doped experiments to investigate if silicic rocks could be formed when 
silica-rich andesitic melts assimilate granitic rocks. Preliminary results 
suggest that the high volume of peritectic crystals produced during the 
experiment, near the assimilation zone, could generate silicic residual 
melts, more silica rich than the doped assimilant (Boijseauneau-López, 
2018). Moreover, under the same experimental conditions, granitic 
quartz, feldspar and pyroxene are digested at different rates (Figure 
11). Pyroxene and feldspar are digested more rapidly than quartz. 
The reason for this could be that pyroxene and plagioclase are more 
reactive than quartz, because of their prominent cleavage, and because 
of viscosity-diffusion issues. When plagioclase and quartz are heated, 
the first portion of melt has the effect of stabilizing the crystal at the 
crystal-boundary interface layer; if this layer is not removed, dissolu-
tion is hindered. Plagioclase and pyroxene release Na, Ca, Al, and Si 
as melting proceeds. This multi-component liquid is similar to the 
melt surrounding the crystal-boundary layer and diffuses away. The 
process is facilitated because the diffusivity of Na-K is decoupled from 
the viscosity of the melt, hence, alkalis can move through the melt 
without requiring readjustments on the topology of the tetrahedrally 
coordinated network structure (Mungall, 2002). Contrary to plagio-
clase, the melting of quartz produces a highly viscous crystal-boundary 
interface layer. Quartz is a single component phase, that only releases 
SiO2 upon melting. Thus, dissolution will stop when the melt at the 
crystal surface is saturated in SiO2 and can only resume as SiO2 diffuses 
away. However, the diffusivity of SiO2 is slow because the diffusion of 
network-modifying cations with intermediate field strength proceeds 
only with local rearrangements of the melt structure (Mungall, 2002). 
This mechanism explains why many andesites in the MGVF contains 
quartz with reaction rims, but xenocrysts-megacrysts of plagioclase 
and pyroxene are far less common. We think dacites could be created 
if intrusive rocks are partially melted (plagioclase+pyroxene preferen-
tially melted over quartz) in short periods of time and at relatively low 
temperatures; instead, rhyolites could be created if the interaction that 
produced the partial melting is protracted, the temperature is relatively 
higher, and quartz is effectively melted. 

Partial melting triggered by frequent-hot magma injections
Despite the partial melting of cold intrusive rocks is not easily 

achieved at shallow depths (e.g., Dufek and Bergantz, 2005), we think 
that the intensely deformed upper-crust in the MGVF and the arrival 
and accumulation of hot magma in the upper crust could promote 
partial melting of the local basement (e.g., Huber et al., 2011). It is 
well recognized that local tectonics and the rheology of the upper-
crust allow for the accumulation of more magma at depth than that 
erupted to the surface (e.g., Martí Molist, 2017; Townsend and Huber, 
2020), hence protracted interactions between hot magmas and the 
local basement are enforced. 

The seismogenic zone below Michoacán reaches approximately 15 
km depth (Rodríguez-Pérez and Zuñiga, 2017), hence, the local granitic 
basement below the MGFV is deformed by the faults observed at the 
surface. The upper crust below the MGVF can be considered as a heat 
sink. The MGVF has one of the largest concentrations of monogenetic 
volcanoes in the world. Although the volume of magma that cannot 

Figure 10. Diagram that describes the percentage of elements (see text for 
details) that have an average correlation factor (r) >0.7 for binary models with 
silica-rich andesites and granite xenoliths as end members (see Supplementary 
Files S1 and S2 for data and models). All rocks were modeled with five different 
granites. Z1 samples seems to be better explained by mixing of silica-rich 
andesites and partial melts produced from granites. Low percentage of elements 
with correlation factors >0.7 could suggests that partial melts are strongly 
dependent of the mineral assemblage in each granite, hence in order to explain 
the mixing relations of each silicic rock, the granitic rocks of the corresponding 
local basement should be sampled, which is impossible to date. 
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reach the surface is unaccountable, its contribution for heating the crust 
cannot be neglected. The most recent swarm of earthquakes around 
the Tancítaro- Parícutin area is a good example. During January 2020 
the Servicio Sismológico Nacional (National Seismological Service) 
reported 1080 earthquakes near the Tancítaro volcano, although 
this is only a preliminary report and many more earthquakes were 
registered. This is not the only seismic event that has been detected; 
during 1997, 230 earthquakes were also studied on the Tancítaro area 
(Pacheco et al., 1999). The hypocenters for the most recent swarm of 
earthquakes were calculated at 11–14 km depth (M. Perton, personal 
communication). This depth matches the bottom of the seismogenic 
zone proposed for Michoacán (Rodríguez-Pérez and Zuñiga, 2017). 
We thus propose that if magma migrates by hydraulic fracturing, a 
series of stress barriers, as the bottom of the granitic intrusion, could 
hinder the propagation of fractures. 

If the upper crust is relatively cold, high fluxes of magma result 
in dyke opening and eruption proceeds (Jellinek and DePaolo, 2003); 
otherwise, if magma flux rate is low, the time span between magma 
fluxes is enough to produce a visco-elastic relaxation of the crust, and 
magma generally reach its solidus (Annen, 2009). If these accumulated 
magmas are steadily injected or heated by small volumes of magma, 
magma chambers can develop and grow with a mixture of eruptable 
melt and crystals. 

The unknown volume of magma stalled beneath the MGVF could 
be a great heat supplier to the upper-crust via convection of fluids or 
conduction (e.g., Guerrero et al., 2021). Magma eruption rates calcu-
lated for the MGVF are 8×10-4 – 2×10-5 km3/year in areas of 15000 
and 560 km2, respectively (Hasenaka and Carmichael, 1985a; Osorio-
Ocampo et al., 2018). The magma eruption rate (8×10-4 km3/year)

is higher compared to the rate needed for the accretion of plutons 
(1×10-4 km3/year) (Annen, 2009). Hence, we think that 7 My of 
volcanic activity, and the contribution of unerupted magmas below 
the MGVF, could have created a hot middle crust prone to deform 
in a visco-elastic fashion when magmas are trapped for accumu-
lation.

The most voluminous silicic edifice in the MGVF is El Tzirate 
dome (~3.5 km3). If intermediate magmas were to accumulate and 
mix with local granite in a proportion of 3:1, the highest magma flux 
(8×10-4 km3/year) would last 3280 years to produce the silicic magma. 
Although this incubation time seems feasible, some particular erup-
tions indicate that considerably less time would be necessary. The 
Parícutin eruption tapped at least 1.59–1.68 km3 of magma in nine 
years, whereas other medium-sized volcanoes erupted up to 10 km3 

of magma (Siebe et al., 2014), probably in similar periods of time. If 
only a portion of such high fluxes are captured by stress barriers and 
local compressive stresses, the maturation of a magma chamber and 
mobilization of its eruptable portion of magma (e.g., Zou and Ma 2020) 
would be guaranteed. 

Summary: Crustal plumbing system for the generation of silicic 
magmas in the MGVF

The schematic model on Figure 12 summarizes our proposal for 
silicic magma generation in the MGVF. We assume that basaltic mag-
mas are created in a subduction zone. After the basaltic magmas leave 
the mantle wedge, they get stalled in deep crust reservoirs and evolve 
through crystallization and partial melting of lower crustal rocks (e.g., 
Ownby et al., 2011). Our tomography results show  a normal wave 
velocity-pressure gradient at depths above 30 km and ~100 km from 
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Figure 11. Backscattered electron image of the products of a hydrothermal experiment 
doped with granite to investigate the role of assimilation on the generation of dacites in the 
Michoacán-Guanajuato volcanic field (Boijseauneau-López, 2018). Note that plagioclase-
feldspar have dissolution zones (sieved texture), pyroxene dissolved extensively and 
produced a series of peritectic crystals, and quartz seems to not be greatly affected.
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the trench, (Figure 3). At 30–35 km depth, the tomography suggests 
a seismic velocity anomaly and at greater depths, where the pressure-
wave velocity gradient resumes, the MOHO can be interpreted. We 
recognize that the 30–35 km low velocity anomaly could be interpreted 
as a hot solid zone or as partially melted rocks, although a separate 
study is needed to resolve the ambiguity. Given its location with respect 
to the trench and the subducted slab, we interpret this anomaly as a 
swarm of sills, located in the lower crust, whose emplacement trig-
gered the partial melting of crustal rocks to produce the intermediate 
magmas observed in the MGVF (e.g., Annen et al., 2006). This depth 
range matches results from previous geophysical studies suggesting that 
the crust below the MGVF is about 30–40 km thick (Mazzarini et al., 

2010). The compositional range observed for the intermediate rocks of 
the MGVF could be produced by different degrees of partial melting, 
assimilation of different crustal rocks en route to the surface and/or 
heterogeneous mantle sources (e.g., Larrea et al., 2021), however, this 
is beyond the scope of our investigation.

Intermediate magmas ascend by positive buoyancy (Wanke et 
al., 2019) and get diverged through an intense network of faults and 
fractures in the seismogenic zone to produce numerous monogenetic 
volcanoes at the surface (e.g., Bolós et al., 2015.). The intersection of 
ENE-WSW and NNW-SSE faults within the MGVF produce zones 
where compression acts locally and traps magma at 4–8 km depth. At 
this depth, a previously heated crust and high magma fluxes enhance 

Figure 12. Schematic model of the plumbing system that feeds silicic magmas to the Michoacán-Guanajuato volcanic field. Basaltic magmas created in a subduc-
tion zone get stalled in the lower-crust (low shear velocity zone; Figure 3) and evolve through crystallization and assimilation. Magmas reach the seismogenic zone 
and get diverged into a deformed upper crust to form monogenetic volcanoes. Where fault systems with different orientation interact, a local compression zone is 
produced and magma accumulate. The accumulated magma releases heat and the granitic hosting rock is partially melted to produce crystal mushes. If local stresses 
are reoriented in short periods of time and normal faults are reactivated, plagioclase and pyroxene are digested and melts are mixed to produce and tap dacites; if the 
interaction between the magmas and the crystal mush is protracted, all minerals, including quartz, can be digested and rhyolites are erupted (see text for details).
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the development and growth of magma chambers. Hot intermediate 
magmas get stalled in upper-crustal reservoirs and interact with granitic 
host rocks. If the interaction is brief, the digestion of granites yields 
dacitic hybrid melts due to the preferential melting of plagioclase and 
pyroxene; if stagnation is protracted, magmas interact more effectively 
with granitic quartz, crystal mushes develop, and the dissolution of all 
granite mineral phases yields rhyolitic melts. 
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